1/1.2+1/2.3+1/3.4...+1/9.10
1/1.2 + 1/2.3 + 1/3.4 + ....+ 1/9.10
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\)\(\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
ủng hộ mik nha mn
=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10
=1-1/10
=9/10
Em chao anh anh ket ban voi em nhe
=1-1/2+1/2-1/3+1/4-1/5+1/5-1/6+....+1/9-1/10
=1-1/10=9/10
KET BAN VOI EM NHE
Tinh tong: S= 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/9.10?
S=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
S=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
S=\(\frac{1}{10}-1\)
S=\(\frac{9}{10}\)
(2.1.2+1/1.2) + (2.2.3+1/2.3) + (2.3.4+1/3.4) +...+ (2.9.10/9.10) = ?
Tính
a 1/1.2+1/2.3+1/3.4+.......+1/9.10
bằng 9/10 đó bạn
* mình nha, thanks ^.^
đặt A= 1/1.2+1/2.3+1/3.4+.......+1/9.10,ta có:
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A=1-\frac{1}{10}\)
\(\Rightarrow A=\frac{10}{10}-\frac{1}{10}\)
\(\Rightarrow A=\frac{9}{10}\)
1/1.2+5/2.3+11/3.4+...+89/9.10
10.(1/1.2+5/2.3+11/3.4+...+89/9.10)
(1/1.2+1/2.3+1/3.4+.......+1/8.9+1/9.10) .100-(5/2:(x +206/100):1/2=89
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow x+\dfrac{103}{50}=5\)
hay \(x=\dfrac{147}{50}\)
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-.....-\frac{1}{9.10}\)
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-......-\frac{1}{9.10}\)
\(=\frac{1}{2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}=\frac{1}{10}\)
Kết quả là \(\frac{9}{10}\)
Đúng 100% k mình nha
A= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/ 7.8 + 1/ 8.9 + 1/ 9.10
A= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/ 7.8 + 1/ 8.9 + 1/ 9.10
=> A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
=> A = 1 - 1/10 = 9/10
Vậy A = 9/10
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
A = 1 - 1/10 = 9/10
A= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/ 7.8 + 1/ 8.9 + 1/ 9.10
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10
= 1 - 1/10 = 9/10