cho tam giác nhọn ABC có các đường cao AD, BE, CF. Gọi M,N,I,K lần lượt là hình chiếu của D trên AB, BE, CF, AC. CMR: MI song song EF
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
cho tam giác ABC có 3 đường cao AD, BE, CF. Gọi M,N,I,K lần lượt là hình chiếu của D trên AB,AC,BE,CF. chứng minh I,M,N,K thẳng hàng
Cho tam giác ABC với ba đường cao AD; BE; CF. Gọi M; N; I; K lần lượt là hình chiếu của D trên AB; AC; BE; CF. Chứng minh: 4 điểm M; N; I; K thẳng hàng
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I; K; M; N lần lượt là hình chiếu của D trên AB; BE; CF;AC. Chứng minh I,K,M,N thẳng hàng
Giúp mình với mình cảm ơn!!
cho tam giác nhọn ABC (AB<AC) , ba đường cao AD , BE , CF cắt nhau tại H .Goi I là giao điểm của EF va AH .Đường thẳng qua I và song song BC cắt AB ,BE lần lượt tại P và Q
a, CMR tam giác AEF đồng dạng với tam giác ABC
b, CM IP=IQ
c,Gọi M là trung điểm AH .CM I là trực tâm tam giác ABC
Cho tam giác nhọn ABC có ba đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu vuông góc của D trên AB, AC, BE, CF.
a) Chứng minh EF // MN
b) Chứng minh MP + NQ = EF
c) Đường thẳng PQ cắt DE, DF lần lượt tại K, I và AD cắt EF, MN lần lượt tại G, O. Giả sử O là trung điểm MN. Khi đó tứ giác GIDK là hình gì?
cho tam giác ABC cân tại A, ba đường cao AD,BE,CF. Gọi M,N,I,K lần lượt là hình chiếu của D trên AB,AC,BE,CF. Chứng minh rằng 4 điểm M,N,I,K thẳng hàng
Cho tam giác ABC nhọn AB<AC , các đường cao AD , BE , CF Cắt nhau taih H a) Cm AE/AF=AB/AC vÀ ^AEF=^CED .
b) Gọi M là điểm đối xứng của H qua D sao . Giao điểm của EF với AM là N Cm HN.AD=AN.DM
c)Gọi I và K lần lượt là hình chiếu của M trên cạnh AB và AC Cm ba điểm I,D,K thảng hàng
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
ANH CS THỂ THAM KHẢO
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
trên đường tròn O lấy ba điểm A,B,C sao cho tam giác ABC nhọn. gọi AD,BE,CF là các đường cao của tam giác ABC; Đường thẳng EF cắt BC tại P.Qua D kẻ đường thẳng song song với đường thẳng EF cắt đường thẳng AC và AB lần lượt tại Q và R, M là trung điểm của BC.
a, CM tứ giác BQCR là tứ giác nội tiếp
b, CM hai tam giác EPM và DEM đồng dạng