Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị MInh Huyề
Xem chi tiết
Kato kid
16 tháng 10 2019 lúc 21:32

1-1/3-1/65

Hoàng hôn  ( Cool Team )
16 tháng 10 2019 lúc 21:35

\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)

\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(A=1-\frac{62}{195}\)

\(A=\frac{133}{195}\)

Phạm Hồng Mai
Xem chi tiết
Nguyễn Thu Minh
5 tháng 3 2017 lúc 21:54

Đề bài sai 

Kurosaki Akatsu
5 tháng 3 2017 lúc 21:55

\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)

linh xinh
5 tháng 3 2017 lúc 22:00

A=1/3-1/5+1/5-1/7+...+1/99-1/101 là 2/99.101 nhé bạn mình làm nhiều rồi có lẽ bạn ghi đề sai

A=98/303

mèo
Xem chi tiết
O0o_ Kỷ Băng Hà _o0O
Xem chi tiết
ST
3 tháng 5 2017 lúc 12:16

\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)

\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

Nguyễn Tiến Dũng
3 tháng 5 2017 lúc 12:11

N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/101

N=49/101

Nguyễn Tiến Dũng
3 tháng 5 2017 lúc 13:05

nhầm 98/303 mới đúng

Nguyễn Thị Minh Anh
Xem chi tiết
Tèo Tham An
3 tháng 5 2017 lúc 13:06

Giải :

\(N=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

=> \(N=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\right)\right)\)

=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\right)\)

=> \(N=\frac{98}{303}\)

Nguyễn Tiến Dũng
3 tháng 5 2017 lúc 13:04

N=1/2x(1/3-1/5+1/5-1/7+.....+1/99-1/101)

N=1/2x(1/3-1/101)

N=1/2x98/303

N=49/303

Kudo Shinichi
3 tháng 5 2017 lúc 13:07

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có :

\(\frac{2}{3.5}=\frac{2}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)\)

\(\frac{2}{5.7}=\frac{2}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)\)

........................................

\(\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)

\(\Rightarrow\)\(N=1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Leftrightarrow\)\(N=\frac{1}{3}-\frac{1}{101}\)

\(\Rightarrow N=\frac{98}{303}\)

Ai thấy đúng thì ủng hộ nha !!!!

Xem chi tiết
lê thị ngọc anh
10 tháng 5 2018 lúc 10:00

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

Ngô Phương Linh
10 tháng 5 2018 lúc 10:02

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

Phú Quý Lê Tăng
10 tháng 5 2018 lúc 10:03

Câu đầu tiên:

\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{100}{99}=\frac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{3\cdot4\cdot5\cdot...\cdot99\cdot2}=\frac{100}{2}=50\)

Câu thứ 2:

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}\)

Nguyễn Thu Hoan
Xem chi tiết
Nguyễn Tất Đạt
10 tháng 7 2017 lúc 13:55

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{43.45}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{43.45}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\)

\(=\frac{1}{3}-\frac{1}{45}=\frac{15}{45}-\frac{1}{45}=\frac{14}{45}\)

\(\Rightarrow A=\frac{14}{45}:2=\frac{14}{90}=\frac{7}{45}\)

Vậy \(A=\frac{7}{45}\).

Đức Phạm
10 tháng 7 2017 lúc 15:59

Áp dụng công thức : \(\frac{1}{a}-\frac{1}{a+n}=\frac{n}{a\left(a+n\right)}\)

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{43\cdot45}\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{45}\right)\)

\(A=\frac{1}{2}\cdot\frac{14}{45}=\frac{7}{45}\)

Nguyễn Công Tỉnh
25 tháng 4 2018 lúc 21:40

A=\(\frac{7}{45}\)

Khánh Linh Nguyễn
Xem chi tiết
Hoang Hung Quan
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

bảo nam trần
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Dương Bá Gia Bảo
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

trang trân huyên
Xem chi tiết
Melissa Nguyen
2 tháng 5 2016 lúc 9:08

A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\) 

A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )

A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )

A= 5. (\(1-\frac{1}{100}\))

A= 5.\(\frac{99}{100}\)

A= \(\frac{99}{20}\)

Lê Thanh Trung
23 tháng 3 2017 lúc 8:34

B = \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)

    = \(\frac{1}{2}\)-  \(\frac{1}{3}\)+\(\frac{1}{3}\)-   \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)-     \(\frac{1}{10}\)

    =  \(\frac{1}{2}\) -     \(\frac{1}{10}\)

     =       \(\frac{2}{5}\)

Trinh Yen Chi
17 tháng 4 2017 lúc 5:26

C = 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 + 2/13.15 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15 = 

   = 1/3 - 1/15 = 5/15 - 1/15 = 4/15