tim 2 tu nhien ko chia het cho 10 ma tich bang10000
a) Chứng minh cac tich sau day la so chan:
( n+7 ) * ( n+10 ) va m*n*( m-n ) trong do m , n la so tu nhien ( vi ko co dau nhan nen minh viet dau sao )
b) Chưng minh rang voi n la so tu nhien thi B = n2 + 1 ko chia het cho 3
c)Tim so tu nhien n khi n2 chia het cho 3
tim 2 so tu nhien khong chia het cho 10 co tich bang 10000
ai giai day du dung tui tick cho
Ta có: 2 số đó bằng:
625 và 16
Vì: 625 không chia hết cho 10
16 cũng không chia hết cho 10
Mà 625x16=10000
chet chua thang ngu
dinhhhhhhhhhh huonggggggggg
ngu nhu cho
1.Co bn so co 3 chu so chia het cho 2 ma ko chia het cho 3
2.Viet so tu nhien lon nhat co 4 chu so ma tong 4 chu so bang tich 4 chu so
3.Viet so tu nhien lon nhat co 5 chu so ma su dung 3 chu so khac nhau
4.Tinh tong tat ca cac so co 4 chu so chia het cho 2 va 3
5.Co bn so co 4 chu so ma tich 4 chu so do bang 12
Cac ban giai giup minh nha ,minh dang can gap
tim so tu nhien n lon nhat de tich cac so tu nhien tu 1 den 1000 chia het cho 5
tim 2 so tu nhien co tong = 432 , ƯCLN cua chung = 36
tim 2 so tu nhien co tong = 66 , ƯCLN = 6 . mot so chia het cho 5
tim 2 so tu nhien co hieu = 84 biet ƯCLN = 12
tim 2 so tu nhien co tich = 864 , ƯCLN = 6
1.
Gọi 2 số tự nhiên bất kì là a ; b ( a ; b ϵ N* ) \(\left(1\right)\)
Theo đầu bài ta có : \(\left(a;b\right)=36\)
→ a chia hết cho 36 và b chia hết cho 36
→ \(a=36m\) và \(b=36n\)
Mà a + b = 432 → \(36m+36n=432\)
→ \(m+n=12\) \(\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(11\) | \(7\) |
\(n\) | \(1\) | \(5\) |
\(a\) | \(396\) | \(252\) |
\(b\) | \(36\) | \(180\) |
Vậy \(\left(a;b\right)=\left\{\left(396;36\right);\left(36;396\right);\left(252;180\right);\left(180;252\right)\right\}\)
2.
Gọi 2 số cần tìm là a và b ( a , b ϵ N )
Theo đầu bài ta có : \(\left(a,b\right)=6\)
→ \(a=6m\) và \(b=6n\) ( m;n ϵ N và (m;n)= 1) \(\left(1\right)\)
Lại có : \(a+b=66\)
→ \(6m+6n=66\)
→ \(m+n=11\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có bảng sau :
\(m\) | \(10\) | \(9\) | \(8\) | \(7\) | \(6\) |
\(n\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(a\) | \(60\) | \(54\) | \(48\) | \(42\) | \(36\) |
\(b\) | \(6\) | \(12\) | \(18\) | \(24\) | \(30\) |
Vì 1 trong 2 số chia hết cho 5 → Ta có : a = 60; b = 6
hoặc a = 36 ; b = 30
tim so tu nhien n lon nhat de tich cac so tu nhien tu 1 den 1000 chia het cho 5n
Để n lớn nhất thì n chính là số các thừa số 5 xuất hiện trong tích các số từ 1 đến 1000
Xét 5n < 1000 . ta có: 54 = 625 < 1000 < 55
- Tìm các số chia hết cho 5 từ 1 đến 1000 gồm: 5; 10; 15;....;1000
=> có (1000 - 5) : 5 + 1 = 200 số
- tìm các số chia hết cho 25 (Vì 25 = 5.5) gồm: 25; 50; ...; 1000
=> có: (1000 - 25) : 25 + 1 = 40 số
- Tìm các số chia hết cho 125 (125 = 5.5.5) gồm: 125; 250;...; 1000
=> có : (1000 - 125): 125 + 1 = 8 số
- Tìm các số chia hết cho 625 (625 = 5.5.5.5) gồm: 625 => có 1 số
Vì những số chia hết cho 625 sẽ chia hết cho 125 ; 125; 25; 5 nên trong cách tính trên có đếm trùng
Vậy có : 1 số chia hết cho 625; => có 4 số 5 trong tích
7 số chia hết cho 125 => có 7.3 = 21 số 5 trong tích
32 số chia hết cho 25 => có 32 x 2 = 64 số 5 trong tích
200 - 40 = 160 số chỉ chia hết cho 5 => có 160.1 = 160 số 5 trong tích
Vậy có tất cả: 4 + 21 + 64 + 160 = 249 thừa số 5 trong tích
Vậy n lớn nhất = 249
a)tim chu so a biet 20a20a20a chia het cho 7
b)tim so tu nhien a va b,sao cho a chia het cho b va b chia het cho a
c)tim so tu nhien co hai chu so,sao cho neu viet them no tiep sau so 1999 thi ta duc mot so chia het cho 37
d)co hai so tu nhien x va y nao ma (x+y)(x-y)=1002 hay khong?
tim 3 so tu nhien lien tiep co tich bang 3660
tim x biet :
84 chia het cho x va 48 chia het cho x
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
co bao nhieu so tu nhien chia het cho 3 ma ko chia het cho 7