\(\frac{1}{1.2.3.4.5}+\frac{1}{2.3.4.5.6}+.........+\frac{1}{8.9.10.11.12}\)
1.Tính:
A=\(\frac{1}{5}\)+\(\frac{1}{5^2}\)+\(\frac{1}{5^3}\)+...+\(\frac{1}{5^{99}}\)
B=\(\frac{1}{1.2.3.4.5}\)+\(\frac{1}{2.3.4.5.6}\)+...+\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\)
2.Cho A=2+22+23+...+210
Chứng minh: a,A\(⋮\)3
b,A\(⋮\)7
c,A\(⋮\)15
Help me, mình cần gấp T_T
1.Tính:
B=\(\frac{1}{1.2.3.4.5}\)+\(\frac{1}{2.3.4.5.6}\)+...+\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\)
2.Cho A=2+22+23+...+260
Chứng minh: a,A\(⋮\)3
b,A\(⋮\)7
c,A\(⋮\)15
Mong moi người giúp mình
mình chỉ biết tinh A thôi.
A=2A-A
2A=\(2^2+2^3+2^4+...+2^{61}\)
=>A=\(2^{61}-2\)
Tại sao bạn chửi họ ngu hả MT moblie?
Cho biểu thức A=1.2.3.4.5. .2018.(\(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2018}\) ).Chứng minh rằng A chia hiết cho 2019
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}=\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1009}+\frac{1}{1010}\right)\)
\(=\frac{2019}{1.2018}+\frac{2019}{2.2017}+...+\frac{2019}{1009.1010}\)
\(=2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)\)
Do đó \(A=1.2.3....2018.2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)⋮2019\) (đpcm)
CMR: \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+\frac{4}{5.5!}+...+\frac{4}{5.n!}< 0,8\),8( dấu chấm là dấu nhân và n!=1.2.3.4.5....(n-1).n)
Đề còn thiếu 1 điều kiện nữa là \(n>0\)
Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có :
\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)
Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)
Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)
\(B< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(B< 1\) ( đpcm )
Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) )
Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)
Chúc bạn học tốt ~
tinh B=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)
Tinh tong
A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{97.3}+\frac{1}{99.1}}\)
khong tinh = may tinh cam tay hay c/m \(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\)
Ta có: \(4\left(1+\frac{\sqrt{3}}{2}\right)=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\Rightarrow1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\)
Tương tự \(1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\)
\(VT=\frac{\left(\frac{\sqrt{3}+1}{2}\right)^2}{1+\frac{\sqrt{3}+1}{2}}+\frac{\left(\frac{\sqrt{3}-1}{2}\right)^2}{1-\frac{\sqrt{3}-1}{2}}=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{3+\sqrt{3}}{2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{3-\sqrt{3}}{2}}\)\(=\frac{\left(\sqrt{3}+1\right)^2}{2.\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{2.\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{\sqrt{3}+1+\sqrt{3}-1}{2\sqrt{3}}=1=VP\)
Tinh\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}vaB=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
Tinh\(\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}}\)
Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011