(x+5)*2016=(19+5)*2016
Ngày 19/5 năm 2016 vào thứ 6. Hỏi ngày 19/5 năm 2020 là thứ mấy ? ( Ghi cách giải rõ ràng , nhớ rằng 2016 là năm nhuận )
So sánh \(A=\frac{15^5+2017}{19^5-1}vaB=\frac{19^5+2016}{19^5-2}\)Giúp mình nhé cảm ơn
Nhân chéo là được bạn ạ
TA so sánh: (15^5+2017).(19^5-2) với (19^5+2016).(19^5-1)
Dễ dàng thấy (15^5+2017).(19^5-2) < (19^5+2016).(19^5-1) (Mỗi thừa số của tích này đều lớn hơn mỗi thừa số của tích kia)
Suy ra A<B.
So sánh hai số sau: A =\(\frac{19^5+2016}{19^5-1}\) và B =\(\frac{19^5+2015}{^{19^5-2}}\)
\(A=\frac{19^5-1+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)
\(\Rightarrow A< B\)
ta thấy:B>1
=>\(B=\frac{19^5+2015}{19^5-2}>\frac{19^5+2015+1}{19^5-2+1}=\frac{19^5+2016}{19^5-1}=A\Rightarrow B>A\)
vậy.....
ìm giá trị nhỏ nhất của A
A=(x+19)2016|y+5|+18990
X x 3+3/20+3/13+3/2016/5+5/20+5/13+5/2016
So sánh 2 số sau: \(A=\dfrac{19^5+2016}{19^5-1}\) và \(B=\dfrac{19^5+2015}{19^5-2}\)
Ta có: \(A=\frac{19^5+2016}{19^5-1}=\frac{19^5-1+2017}{19^5-1}=\frac{19^5-1}{19^5-1}+\frac{2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{19^5-2+2017}{19^5-2}=\frac{19^5-2}{19^5-2}+\frac{2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
Vì \(\frac{2017}{19^5-1}< \frac{2017}{19^5-2}\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\Rightarrow A< B\)
Vậy A < B
So sánh 2 số sau: \(A=\dfrac{19^5+2016}{19^5-1}\) và \(B=\dfrac{19^5+2015}{19^5-2}\)
Ta có: \(A=\dfrac{19^5+2016}{19^5-1}=1+\dfrac{2017}{19^5-1}\)
\(B=\dfrac{19^5+2015}{19^5-2}=1+\dfrac{2017}{19^5-2}\)
Vì \(\dfrac{2017}{19^5-1}< \dfrac{2017}{19^5-2}\Rightarrow1+\dfrac{2017}{19^5-1}< 1+\dfrac{2017}{19^5-2}\)
\(\Rightarrow A< B\)
Vậy A < B
So sánh 2 số sau: \(A=\dfrac{19^5+2016}{19^5-1}\) và \(B=\dfrac{19^5+2015}{19^5-2}\)
\(A=\frac{19^5+2016}{19^5-1}=\frac{\left(19^5-1\right)+2017}{19^5-1}=1+\frac{2017}{19^5-1}\)
\(B=\frac{19^5+2015}{19^5-2}=\frac{\left(19^5-2\right)+2017}{19^5-2}=1+\frac{2017}{19^5-2}\)
Vì \(19^5-1>19^5-2\) nên \(\frac{2017}{19^5-1}< \frac{2}{19^5-2}\)
\(\Rightarrow1+\frac{2017}{19^5-1}< 1+\frac{2017}{19^5-2}\)
Vậy \(A< B\)
(2/3 + 3/4 + 4/5 + .........+ 2016 /2017 ) x ( 1/2 + 2/3 + 3/4 + ......+ 2015 /2016) - ( 1/2 + 2/3 + 3/4 + ........2016 /2017 ) x 2/3 + 3/4 + 4/5 + .....+ 2015/2016)
Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có:
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017
Cách 2: