Cho 3 số nguyên x,y,z sao cho x=y+z.CMR: 2(xy+xz-yz) là tổng của 3 số chính phương
cho 3 số nguyên x,y,z sao cho x=y+z.Chứng minh rằng 2(xy+xz-yz) là tổng của 3 số chính phương.
x=y+z ⟺ x−y−z=0 → (x−y−z)2=0 ⟺ x2+y2+z2−2(xy+xz−yz)=0
x=y+z
⟺ x−y−z=0→(x−y−z)2=0⟺x2+y2+z2−2(xy+xz−yz)=0
⟺x2+y2+z2=2(xy+xz−yz)
⟺x2+y2+z2
=2(xy+xz−yz)
Cho 3 số nguyên x, y, z sao cho:x= y+ z. Chứng minh rằng 2(xy+ xz - yz) là tổng của 3 số chính phương
Cho \(x,y,z\in Z\)thỏa mãn \(x=y+z\). CMR: \(2\left(xy+yz+xz\right)\)là tổng của 3 số chính phương
ủa,\(2\left(xy-yz+zx\right)\) mới đúng chứ nhể ?
\(x^2=\left(y+z\right)^2=y^2+2yz+z^2\Rightarrow2yz=x^2-y^2-z^2\)
\(x=y+z\Rightarrow x-y=z\Rightarrow x^2-2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=2xy\)
\(x=y+z\Rightarrow y=x-z\Rightarrow y^2=x^2-2xz+z^2\Rightarrow x^2+z^2-y^2=2xz\)
Khi đó:
\(2xy-2yz+2zx=x^2+y^2-z^2-x^2+y^2+z^2+x^2+z^2-y^2=x^2+y^2+z^2\)
=> đpcm
Thêm một cách nhé!
\(x=y+z\)
=> \(y+z-x=0\)
=> \(\left(y+z-x\right)^2=0\)
=> \(\left(y+z\right)^2-2x\left(y+z\right)+x^2=0\)
=> \(x^2+y^2+z^2-2xy-2xz+2yz=0\)
=> \(2\left(xy-yz+xz\right)=x^2+y^2+z^2\)
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
Đề bài sai ngay từ giả thiết x,y,z nguyên dương.
Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)
Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)
Khi đó ta giải như sau :
\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)
\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
Cho x,y,z là 3 số nguyên khác nhau. Chứng minh nếu a=x^2-yz; b=y^2-xz; c=z^2-xy thì tổng ax+by+cz chia hết cho (a+b+c)
Từ giả thiết
x^2 - yz = a
y^2 - zx = b
z^2 - xy = c
ta suy ra
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau);
và
x^3 - xyz = ax
y^3 - xyz = by
z^3 - xyz = cz.
Cộng các đẳng thức theo vế, ta được
x^3 + y^3 + z^3 - 3xyz = ax + by + cz.
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại
(x + y + z)(a + b + c) = ax + by + cz.
Suy ra ax + by + cz chia hết cho a + b + c.
bài này dùng chia hết thôi
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
Cho 3 số tự nhiên khác 0 là x,y,z sao cho (xy+1)(yz+1)(zx+1) là số chính phương. Chứng minh (xy+1), (yz+1), (zx+1) là 3 số chính phương