Chứng tỏ rằng số tự nhiên có dạng HỌC HỌC chia hết cho 13
Chứng tỏ rằng số tự nhiên có dạng HỌCHỌC chia hết cho 13
Ta có dạng HỌCHỌC = HỌC X 1000 + HỌC
= HỌC X 1001
HỌC X 7 X 11 X 13 chia hết cho 13
Chững tỏ ...............
k mik nha
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
cho S = 3+3^2+3^3+....+3^2016
chứng tỏ S chia hết cho 13
chứng tỏ S chia hết cho 40
cho biết a,b là các số tự nhiên thỏa mãn 3a+2b chia hết cho 17 chứng tỏ rằng 10a+b chia hết cho 17
nhanh nhé 1goiwf chiều mình phải đi học rồi
s= 3+32+33+ ...+ 32016
= ( 3+32+33) + .....+( 32014+ 32015+32016)
= 3( 1+3+32)+.....+ 32014.( 1+3+32)
= (3+....+32014)(1+3+32)
= (3+....+32014)13 chia hết cho 13
câu còn lại nhốm 4 số nha
vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17
ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17
=> 3( 10a+b) chia hết cho 17
=> 10a+b chia hết cho 17
1)chứng tỏ rằng tích n(n+1)(n+5) là một số chia hết cho 3 với mọi số tự nhiên n
2)Tìm số dư khi chia tổng 2^1+2^2+2^3+2^4+...+2^99+2^100 cho 7
3)Chứng tỏ rằng số có dạng abcabc chia hết cho 7:11:13
chứng tỏ rằng số tự nhiên có dạng aaaaaa lúc nào cũng chia hết cho 7(chẳng hạn 333333 chia hết cho 7)
\(aaaaaa=111111\times a=15873\times7\times a⋮7\left(\text{đ}pcm\right)\)
1 Chứng tỏ với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 5
2 Chứng tỏ : số có dạng abc abc bao giờ cũng chia hết cho 13
TH1: n chia hết cho 5
=> n2 chia hết cho 5
=> n2 + n chia hết cho 5
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 1
TH2: n chia 5 dư 1
=> n2 chia 5 dư 1
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 +n + 1 chia 5 dư 3
TH3: n chia 5 dư 2
=> n2 chia 5 dư 4
=> n2 + n chia 5 dư 1
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 2
TH4: n chia 5 dư 3
=> n2 chia 5 dư 4
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 3
TH5: n chia 5 dư 4
=> n2 chia 5 dư 1
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 3
Vậy với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 5
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Chứng tỏ rằng các số tự nhiên có dạng abcabc chia hết cho ít nhất 3 số nguyên tố.
ta phân tích như sau :
abcabc=abcx1001 vì 1001 chia hết cho 3 số nguyên 7 ;11;13 nên abcx1001cũng chia hết cho 7;11;13 mà abcabc=abcx1001 từ đó suy ra abcabc chia hết ít nhất 3 số nguyên tố
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
co: abcabc= abc . 1001
vì: 1001 chia hết cho 7; 11;13 (đều là các số nguyên tố)
=> abc . 1001 chia het cho 3 so nguyen to 7; 11; 13
Vay moi so tu nhien co dang abcabc deu chia het cho it nhat 3 so nguyen to (DPCM)
bài 1:Chứng tỏ rằng
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
bài 2 : chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7
bài 3 : chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
bài 4 : chứng tỏ rằng lấy một số có hai chữ số , cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn đc một số chia hết cho 11
Lưu ý: bạn nào trả lời xong 4 bài trên chính xác và làm xong đầu tiên sẽ đc like.