X -\(\frac{2}{7}\)= \(\frac{X}{21}\)
Tìm các số nguyên x biết:
a,\(\frac{5}{21}+\frac{-3}{7}< \frac{x}{21}< \frac{-2}{7}+\frac{8}{21}\)
b,\(\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}\frac{1}{3}\)
c,\(\frac{5}{3}+\frac{-14}{3}< x< \frac{8}{5}+\frac{18}{10}\)
a)\(\frac{5}{21}\)+\(\frac{-3}{7}\)<\(\frac{x}{21}\)<\(\frac{-2}{7}\)+\(\frac{8}{21}\)
\(\Rightarrow\)\(\frac{-4}{21}\)<\(\frac{x}{21}\)<\(\frac{2}{21}\)
\(\Rightarrow\)\(\frac{x}{21}\)\(\in\)\(\left\{\frac{-3}{21};\frac{-2}{21};\frac{-1}{21};\frac{0}{21};\frac{1}{21}\right\}\)
vậy x\(\in\)\(\left\{-3;-2;-1;0;1\right\}\)
mấy câu kia cs tương tự ạ
\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(\left(\frac{3}{5}.x-\frac{2}{3}.x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(\Rightarrow x.\left(\frac{3}{5}-\frac{2}{3}-1\right).\frac{1}{7}=\frac{-5}{21}\)
\(\Rightarrow x.\frac{-16}{105}=\frac{-5}{21}\)
\(\Rightarrow x=\frac{-5}{21}:\frac{-16}{105}\)
\(\Rightarrow x=\frac{25}{16}\)
x.[3/5-2/3-1]=-5/21:1/7
x.-16/15=-5/3
x=-5/3:-16/15
x=25/16
\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right)\cdot\frac{1}{7}=\frac{-5}{21}\)
\(\Leftrightarrow x\left(\frac{3}{5}-\frac{2}{3}-1\right).\frac{1}{7}=-\frac{5}{21}\)
\(\Rightarrow x.\frac{-16}{15}.\frac{1}{7}=-\frac{5}{21}\)
\(\Rightarrow\frac{-16}{105}x=-\frac{5}{21}\)
\(\Rightarrow x=\frac{25}{16}\)
tíc mình nha
\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(\frac{3}{5}x-\frac{2}{3}x-x=\frac{-5}{21}:\frac{1}{7}\)
\(\frac{3}{5}x-\frac{2}{3}x-x=\frac{-5}{3}\)
\(x\left(\frac{3}{5}-\frac{2}{3}-1\right)=\frac{-5}{3}\)
\(x.\frac{-16}{15}=\frac{-5}{3}\)
\(x=\frac{25}{16}\)
k đúng thì thôi nhá lm theo cảm tính thôi
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
biết x + y = -z
2. Tìm x biết:
\(\left(x-5\right)\cdot\frac{30}{100}=\frac{200x}{100}+5\)\(60\%x+0,4x+\frac{x}{3}=2\)\(1\frac{2}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right)\cdot x=\frac{16}{5}\)
1.
A=\(\frac{-5x+-5y+-5z}{21}=\frac{-5\left(x+y+z\right)}{21}=\frac{-5}{21}.x+y+z\)
A= -z+z=0
<p style="padding: 10000000000000000px;" class="alert success"></p>
ai tích mình mình tích lại cho
Tìm x biết:
a/\(\frac{7}{9}-\frac{x}{3}=\frac{1}{9}\)
b/\(\frac{1}{x}-\frac{-2}{15}=\frac{7}{15}\)
c/\(\frac{-11}{14}-\frac{-4}{x}=\frac{-3}{14}\)
d/\(\frac{x}{21}-\frac{2}{3}=\frac{5}{21}\)
CÁC BẠN GIÚP MÌNH VỚI, TÍ NỮA MÌNH PHẢI NỘP BÀI RỒI
\(a/\frac{7}{9}-\frac{x}{3}=\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{7}{9}-\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(b/\frac{1}{x}-\frac{-2}{15}=\frac{7}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{7}{15}+\frac{-2}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(c/\frac{-11}{14}-\frac{-4}{x}=\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-11}{14}-\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-4}{7}\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
\(d/\frac{x}{21}-\frac{2}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{21}=\frac{5}{21}+\frac{2}{3}\)
\(\Rightarrow\frac{x}{21}=\frac{19}{21}\)
\(\Rightarrow x=19\)
Vậy \(x=19\)
#Mạt Mạt#
Mình cảm ơn bạn rất nhiều, nếu muốn bạn có thể cho mình biết gmail của bạn nếu bạn có đc chứ Vương Mạt Mạt
CẢM ƠN VƯƠNG MẠT MẠT NHA!
\(\frac{13}{2x^2+x-21}+\frac{1}{2x-7}=\frac{6}{x^2-9}\)
Tìm x :
\(\frac{5}{7}+x=\frac{29}{21}\)
\(\frac{15}{2}-x=\frac{21}{14}\)
\(a,\frac{5}{7}+x=\frac{29}{21}\)
\(x=\frac{29}{21}-\frac{5}{7}\)
\(x=\frac{2}{3}\)
\(b,\frac{15}{2}-x=\frac{21}{14}\)
\(x=\frac{15}{2}-\frac{21}{14}\)
\(x=\frac{6}{1}\Leftrightarrow6\)
a) 5/7 +x= 29/21
=> x= 29/21 - 5/7
=>x= 14/21= 2/3
b) 15/2 -x= 21/14
<=> 15/2 -x= 3/2
=> x= 15/2 -3/2
=>x= 6
5/7+x=29/21 => x=29/21-5/7=2/3
15/2-x=21/14=3/2 => x=15/2-3/2=12/x=6
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
Giải phương trình
A = \(\frac{4x^2+21}{x^2+4}-\frac{4}{x^2+1}=\frac{x^2+7}{x^2+2}+\frac{2x^2+12}{x^2+3}\)
Tim x biet
d) \(\frac{x-1}{21}=\frac{3}{x+1}\)
e) \(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
\(\frac{x-1}{21}=\frac{3}{x+1}\)
=> \(\left(x-1\right)\left(x+1\right)=21\cdot3\)
=> \(x^2-1=63\)
=> \(x^2=64\)
=> \(\orbr{\begin{cases}x^2=8^2\\x^2=\left(-8\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
\(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
=> \(\frac{12}{13}x=2\)
=> \(x=\frac{13}{6}\)
d, \(\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=63\)
\(\Leftrightarrow x^2-1=63\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
e, \(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
\(\Leftrightarrow\frac{12}{13}x=2\Leftrightarrow x=\frac{13}{6}\)