cho hinh vuong ABCD co hai duong cheo cat nhau tai O. M,N,P la luot trung diem cua AO, OB, CD
C/M DM vuong goc voi AN
1. Cho hinh thang ABCD , phan giac cua goc A cat duong cheo BD tai E va phan giac goc B cat AC tai F . Chung minh EF //AB?
2.Cho tam giac ABC , cac tia phan giac cua goc B va goc C cat nhau tai O . Tu A ve duong thang vuong goc voi OA cat BO , CO lan luot tai M va N . Chung minh BM vuong goc voi BN , CM vuong goc voi CN?
3.Cho goc vuong xOy ,vaf tam giac ABC vuong tai A (B thuoc Ox ,AC thuoc Oy,A va O nam tren hai nua mat phang doi nhau co bo la BC ).chung minh OA la tia phan gic cua xOy ?
cac ban giup mik nha
Cho hinh vuong ABCD co M , N lan luot la trung diem cua AB , AC . C/m : DM vuong goc voi AN
Gọi E là giao điểm của DM và AN
Xét \(\Delta ADM\) và \(\Delta BAN\) có:
\(\widehat{DAM} = \widehat{ABN} = 90^0\)
AD = AB (ABCD là hình vuông (gt))
AM = BN (gt)
\(\Rightarrow\)\(\Delta ADM = \Delta BAN (2cgv)\)
\(\Rightarrow\)\(\widehat{AMD} = \widehat{BNA}\) (2 góc tương ứng)
Xét \(\Delta BAN\) có: \(\widehat{ABN} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{BAN} + \widehat{ANB} = 90^0\) (Định lí tam giác vuông)
mà \(\widehat{AMD} = \widehat{BNA}\) (cmt)
\(\Rightarrow\)\(\widehat{BAN} + \widehat{AMD} = 90^0\)
\(\Rightarrow\)\(\widehat{AEM} = 90^0\)
hay \(DM \perp AN\) tại E
cho hinh vuong ABCD co 2 duong cheo cat nhau tai O. Goi M la trung diem cua AB. E la mot diem thuoc canh BC sao cho duong thang di qua A song song voi ME cat DC tai F.
1) CM: OB2=BM.BA
2) CM: BM.AD=BE.DF
3) CM: tg BOE dong dang vs tg DFO. Tu do tinh Goc EOF
cho hinh chu nhat ABCD co AB = 2AD ,goi E,I lan luot la trung diem cua AB va CD . ve Dx vuong goc voi DE , Dx cat BC tai M . tren tia doi cua CE lay diem K sao cho EK = DM
a, chung minh DEKM la hinh chu nhat
b, tinh goc BKD
c, ve KH vuong goc voi BM , DK cat EM tai G
chung minh A,I,G,H thang hang
cho hinh vuong abcd co ac cat bd tai o.m la diem bat ki thuoc canh ad(m khac d,a).tia bm cat duong thang cd tai n,om cat an tai i.C/m di vuong goc voi an
cho hinh vuong ABCD. Qua A ve hai duong thang vuong goc voi nhau lan luot cat BC tai P va R, cat Cd tai Q va S.
a, chung minh tam giac AQR va tam giac APS la cac tam giac can
b, QR cat PS tai H; M,N la trung diem cua QR va PS. chung minh tu giac AMHN la hinh chu nhat
c, chung minh P la truc tam
d, chung minh MN la duong trung truc cua AC
e, chung minh bon diem M, B,N,D thang han
a) Ta có: ^BAR+^DAR=^BAD=900 (1)
^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)
Từ (1) và (2) => ^BAR=^DAQ
Xét \(\Delta\)ABR và \(\Delta\)ADQ:
^ABR=^ADQ=900
AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)
^BAR=^DAQ
=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:
AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.
Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)
=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.
b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)
Tương tự: AN vuông góc với PS (4)
Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450
AN là phân giác của ^PAS => ^SAN=450
=> ^MAR+^SAN=^MAN=900 (5)
Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)
c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS
Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H
=> P là trực tâm của tam giác SQR (đpcm).
d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.
Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN
=> CN=AN => N nằm trên đường trung trực của AC (6)
Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM
Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM
=> CM=AM => M nằm trên đường trung trực của AC (7)
Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)
e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường
=> BD là trung trực của AC (9)
Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).
1) Cho tam giac ABC vuong tai A co AB=6cm , AC=8cm , M la trung diem cua BC. Tinh do dài AM?
2) Cho hinh thoi ABCD, goi O la giao diem cua hai duong cheo.Ve duong thang qua B va //voi AC, ve duong thang qua C va // voi Bd, hai duong cheo do cat nhau o K
cho hinh chu nhat ABCD co AD= 6cm, AB=8cm, hai duong cheo AC va BD cat nhau tai O. Qua D ke duong thang d vuong goc voi BD, d cat BC tai E.
a) Chung Minh: Tam giac BDC dong dang voi tam giac DCE.
b) Ke CH vuong goc voi DE tai H. CMR: DC.DC=CH.DB
c) goi K la giao diem cua OE va HC. Chung minh K la Trung diem cua HC va tinh ti so dien tich tam giac EHC vatam giac EDB.
d) Chung Minh Rang: Ba duong thang OE, CD, BH Dong Quy.
( Ve Hinh Nhe)
cho tu giac abcd goi o la giao diem cua hai duong cheo ( khong vuong goc) , iva k lan luot la trung diem cua bc va cd goi mn theo thu tu la la diem doi xung cua diem o qua tam i va k
A) chung minh rang tu giac bmnd la hinh binh hanh
B) voi dieu kien nao cua hai duong cheo ac va bd thi tu giac bmnd la hinh chu nhat
C) chung minh 3 diem m,c,n