Gọi E là giao điểm của DM và AN
Xét \(\Delta ADM\) và \(\Delta BAN\) có:
\(\widehat{DAM} = \widehat{ABN} = 90^0\)
AD = AB (ABCD là hình vuông (gt))
AM = BN (gt)
\(\Rightarrow\)\(\Delta ADM = \Delta BAN (2cgv)\)
\(\Rightarrow\)\(\widehat{AMD} = \widehat{BNA}\) (2 góc tương ứng)
Xét \(\Delta BAN\) có: \(\widehat{ABN} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{BAN} + \widehat{ANB} = 90^0\) (Định lí tam giác vuông)
mà \(\widehat{AMD} = \widehat{BNA}\) (cmt)
\(\Rightarrow\)\(\widehat{BAN} + \widehat{AMD} = 90^0\)
\(\Rightarrow\)\(\widehat{AEM} = 90^0\)
hay \(DM \perp AN\) tại E