\(\frac{4}{3\times6}+\frac{4}{6\times9}+\frac{4}{9\times12}+\frac{4}{12\times15}\)
\(\frac{4}{3\times6}+\frac{4}{6\times9}+\frac{4}{9\times12}+\frac{4}{12\times15}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{5}{15}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
Dấu . là nhân nha
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
\(A=\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=>\frac{3}{4}A=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\)
\(=>\frac{3}{4}A=\left(\frac{1}{3}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{12}\right)+\left(\frac{1}{12}-\frac{1}{15}\right)\)
\(=>\frac{3}{4}A=\frac{1}{3}-\frac{1}{15}\)
\(=>\frac{3}{4}A=\frac{4}{15}\)
\(=>A=\frac{4}{15}:\frac{3}{4}\)
\(=>A=\frac{4}{45}\)
Tính nhanh:\(\frac{1\times2\times3+2\times4\times6+3\times6\times9+4\times8\times12+5\times10\times15}{1\times3\times5+2\times6\times10+3\times9\times15+4\times12\times20+5\times15\times25}-\frac{1+2+3+2+4+6+3+6+9+4+8+12+5+10+15}{1+3+5+2+6+10+3+9+15+4+12+20+5+15+25}\)
CHO A = \(\frac{2\times9\times8+3\times12\times10+4\times15\times12+...+98\times297\times200}{2\times3\times4+3\times4\times5+4\times5\times6+...+98\times99\times100}\)
TÍNH A\(^2\)
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
rút gọn:
\(\frac{5^2\times6^{11}\times16^2+6^2\times12^6\times15^2}{2\times6^{12}\times10^4-81^2\times960^3}\)
\(\frac{5^2\times6^{11}\times16^2+6^2\times12^6\times15^2}{2\times6^{12}\times10^4-81^2\times960^3}\)
\(=\frac{5^2\times\left(2\times3\right)^{11}\times\left(2^4\right)^2+\left(2\times3\right)^2\times\left(2^2\times3\right)^6\times\left(3\times5\right)^2}{2\times\left(2\times3\right)^{12}\times\left(2\times5\right)^4-\left(3^4\right)^2\times\left(2^6\times3\times5\right)^3}\)
\(=\frac{5^2\times2^{19}\times3^{11}+2^{14}\times3^{10}\times5^3}{2^{17}\times5^4\times3^{12}-3^{11}\times2^{18}\times5^3}\)
\(=\frac{5^2\times3^{10}\times2^{14}\times\left(2^5\times3+5\right)}{2^{17}\times5^3\times3^{11}\times\left(5\times3-2\right)}\)
\(=\frac{2^5\times3+5}{2^3\times5\times3\times12}\)
\(=\frac{32\times3+5}{8\times15\times12}=\frac{96+5}{120\times12}=\frac{101}{1440}\)
1. Tính
Mẫu: \(\frac{5\times6\times7\times9}{12\times7\times27}\)= 5*6*7*9/6*2*7*9*3= 5/6
a)\(\frac{3\times4\times7}{12\times8\times9}\)
b) \(\frac{4\times5\times6}{12\times10\times8}\)
c) \(\frac{5\times6\times7}{12\times14\times15}\)
Tính :\(\frac{5^2\times6^{11}\times6^2\times12^6\times15^2}{2\times6^{12}\times10^4-81^2\times960^3}\)
CẦN GẤP !! TRÌNH BÀY ĐẦY ĐỦ !!!
Đáp số: A = | |
A = \(\dfrac{1}{3\times6}\) + \(\dfrac{1}{6\times9}\) + \(\dfrac{1}{9\times12}\)+...+\(\dfrac{1}{144\times147}\)
A = \(\dfrac{1}{3}\) \(\times\)( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+\(\dfrac{1}{9\times12}\)+...+\(\dfrac{3}{144\times147}\))
A = \(\dfrac{1}{3}\) \(\times\)(\(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{144}-\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\)\(\times\)(\(\dfrac{1}{3}\) - \(\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\) \(\times\)\(\dfrac{16}{49}\)
A = \(\dfrac{16}{147}\)
Tính:
\(\frac{1}{2\times6}+\frac{1}{4\times9}+\frac{1}{6\times12}+...+\frac{1}{198\times300}\)
Đang cần gấp ạ.
Ta có :
1/2x6 + 1/4x9 + 1/6x12 +...+1/198 x 300
= 1/6x2 + 1/6x6 + 1/6x12 + ....+1/6x9900
= 1/6 x ( 1/2 + 1/6 + 1/ 12 +...+1/9900)
= 1/6 x (1/1x2 + 1/2x3 + 1/3x4+...+1/99x100)
=1/6x (1-1/2 + 1/2-1/3 + 1/3 - 1/4 + ....+1/99-1/100)
=1/6x(1-1/100)
=1/6 x 99/100
= 33/200
k cho mình nha , học tốt
Tính:
\(\frac{1}{2\times6}+\frac{1}{4\times9}+\frac{1}{6\times12}+...+\frac{1}{36\times57}+\frac{1}{38\times60}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)
\(\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{38.60}\)
\(=\frac{1}{2.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{6}.\left(1-\frac{1}{20}\right)\)'
\(=\frac{1}{6}.\frac{19}{20}=\frac{19}{120}\)