Cho ht ABCD. I, K lần lượt là trung điểm của BD, AC. Cmr: IK song song với hai đáy và IK=(DC-AB)/2
Cầu 4. (2 điểm). Cho hình thang ABCD (AB // CD) . Từ trung điểm M của cạnh bên AD, vẽ một đường thẳng song song với hai đáy lần lượt cắt BD tại I: AC tại K: BC tại N. Tính độ dài các đoạn thẳng MI. KN. IK biet AB=8cm : CD = 12 cm
Cho hinh thang ABCD(AB//CD), đường thẳng song song với hai đáy lần lượt cắt AD,AC,BD,BC tại I,K,M,N
a.Chứng minh IK=MN
b.Đường thẳng đi qua giao điểm O của hai đương chéo và song song với hai đáy cắt cạnh bên ở E,F. C/M:OE=OF
Cho hình thang ABCD , AB song song CD.Gọi E,F là trung điểm của AD , BC . È cắt BD , AC tại I và K
a) CMR;I,K là trung điểm của BD,AC
b)Cho AB =8cm ,CD= 12Cm.Tính EI , IK,KF
Cho hình thang ABCD có AB//CD và CD>AB. Gọi I,K lần lượt là trung điểm của AD,BC. Gọi M,N lần lượt là giao điểm của IK với BD,AC
a) tính DC khi AB=15cm, IK=20cm
b) chứng minh : MN = DC-AB/2
Cho hình thang ABCD, AB //CD, M là trung điểm của AB, N là trung điểm của BC. I,K lần lượt là giao điểm của MN với BD và AC với BD. AD=8cm, DC=12cm. Tính MI và IK
1 cho hình thang ABCD ( AB // CD ) gọi I ,K lần lượt là trung điểm của BD và AC . CM : DC - AB / 2 = IK
Cho hình thang cân ABCD (AB//CD),I,K là trung điểm của AC,BD a) cmr: IK//AB b) IK=(DC-AB)/2
Cho hinhthang ABCD(AB//CD) .Gọi M, I, K, N lần lượt là trung điểm của AD, BD, AC, BC. CM IK= (DC-AB) :2.
Cho tam giác ABC , các trung tuyến BD và CE gặp nhau tại G. Gọi I và K lần lượt là trung điểm của BG,CG.
a, CM IK//DE và IK=DE
b, Đường thẳng IK cắt AB,AC tại M và N. Qua G vẽ đường thẳng song song với BC cắt AB và Ac lần lượt ở P và Q . CM: DE=3MI; MI=KN;PG=GQ( vẽ hình hộ mik luôn nhé)
Được rồi, cách giải của bạn cũng đúng.
a. Chứng minh IK // DE và IK = DE
Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.
b. Chứng minh các tính chất yêu cầu
Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.