Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN PHƯỚC NHÂN
Xem chi tiết
Nhung Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 15:31

A=1/4^2+1/6^2+...+1/(2n)^2

=1/4(1/2^2+1/3^2+...+1/n^2)

=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)

=>A<1/4(1-1/n)<1/4

Le Khac Hieu
Xem chi tiết
Chi Katy
13 tháng 1 2017 lúc 11:08

bạn ghi rõ lên

Nguyễn Phương My
13 tháng 1 2017 lúc 11:08

Phải có kết quả thì mới tìm n được chứ

nguyentruongan
13 tháng 1 2017 lúc 11:10

1+1+1+2+2+2+3+3+3+4+4+4+5+5+5+6+6+6+7+7+7+8+8+8+9+9+9+.......+n

=3x(1+2+3..+n)

=3x(2+1).n/2

=3(n+1)n/2

Hứa San
Xem chi tiết
Yến Trần Thị Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 21:38

Câu 2: 

#include <bits/stdc++.h>

using namespace std;

double p1,p2;

int i,n;

int main()

{

cin>>n;

p1=1;

p2=1;

for (i=1; i<=n; i++)

{

if (i%2==0) p2=p2*(i*1.0);

else p1=p1*(i*1.0);

}

cout<<fixed<<setprecision(2)<<p1<<endl;

cout<<fixed<<setprecision(2)<<p2;

return 0;

}

5e lop
Xem chi tiết
SPECTRE
Xem chi tiết
Thanh Tùng DZ
2 tháng 6 2017 lúc 9:25

a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

 \(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

Vậy \(N< \frac{1}{4}\)

b)  \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)

\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)

Vậy \(P< 1\)

Phùng Quang Thịnh
2 tháng 6 2017 lúc 9:40

P<1 nha bn k nha

Nguyễn Kim Nam
Xem chi tiết
Nguyễn Thị Thanh Hằng
Xem chi tiết
tth_new
3 tháng 10 2018 lúc 17:10

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)

Ta thấy:\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{6^2}< \frac{1}{4.5}\)

\(\frac{1}{8^2}< \frac{1}{6.7}\)

.......

\(\frac{1}{2n^2}< \frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\)

Do đó:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\) hay

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2n^2-2}-\frac{1}{2n^2-1}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2n^2-1}\). Thay n = 2 ta có:

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2.2^2-1}=\frac{1}{3}-\frac{1}{7}< \frac{1}{4}^{\left(đpcm\right)}\)

Nguyễn Thị Thanh Hằng
3 tháng 10 2018 lúc 21:01

nhờ bạn giải thích kết quả của phép tính từ \(\frac{1}{8^2}+\frac{1}{10^2}+....+\frac{1}{2n^2}=?\)bao nhiêu và bạn làm thế nào để triệt tiêu còn lại số hạng đầu và số hạng cuối của dãy tính vì theo nếu theo kết quả bạn thì các sô hạng thứ ba trở đi theo quy luật mẫu các phân số được viết dưới dạng \((2n^2-2).\left(2n^2-1\right)\)thì kết quả ko thể triệt tiêu số hạng trước cho số hạng sau được. nhờ bạn giúp cảm ơn bạn(tth).

Nguyễn Thái Bình
3 tháng 6 2020 lúc 19:40

Không Biết đâu con trai , ta mới lớp 2

Khách vãng lai đã xóa