chứng minh
a) ab+ba chia hết cho 11
b) abc + cba chia hết cho 11
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
HÃY chứng minh rằng :
A, ab + ba chia hết cho 11
B, abc - cba chia hết cho 99
A, ab + bc chia het cho 11
Ta có : 10 a +b +10b +a
=11a +11b
=11 (a+b) chia het cho 11
B, abc - cba chia het cho 99
Ta có :( 100a +b +c ) - ( 100c +b+a )
=99a - 99c
=99 (a-b) chia het cho 99
xin loi nhung mik lam cau B hinh nhu sai roi
A, ab + ba chia hết cho 11
= 10a + b + 10b + a
= 11a + 11b
= 11 (a + b)
=> vì 11 (a + b) chia hết cho 11
=> ab + ba chia hết cho 11
Chứng tỏ rằng
a, ab+ba chia hết cho 11
b, abc-cba chia hết cho 99
a) ab + ba = (10a + b) + (10b + a) = 11a + 11b = 11.(a + b) chia hết cho 11
b) abc - cba = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 99.(a - c) chia hết cho 99
BÀI 1:chứng minh tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
BÀI 2:chứng minh:
a,ab + ba chia hết cho 11
b,abc - cba chia hết cho 9
Gọi 4 số liên tiếp là k
Ta có : k + (k + 1) + (k + 2) + (k + 3)
= k + k + 1 + k + 2 + k + 3
= 4k + 1 + 2 + 3
= 4k + 6
= 4k + 4 + 2
= 4 . (k + 1) + 2
Vì 4(k + 1) chia hết cho 4
2 không chia hết cho 4
=> 4 ( k+1) + 2 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4.
Gọi 4 số liên tiếp là k
Ta có : k + (k + 1) + (k + 2) + (k + 3)
= k + k + 1 + k + 2 + k + 3
= 4k + 1 + 2 + 3
= 4k + 6
= 4k + 4 + 2
= 4 . (k + 1) + 2
Vì 4(k + 1) chia hết cho 4
2 không chia hết cho 4
=> 4 ( k+1) + 2 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không bào giờ chia hết cho 4
Bài 2/
a)
ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11 . (a + b) chia hết cho 11
b)
abc - cba = 100a + 10b + c - ( 100c + 10b + a)
= 100a + 10b + c - 100c - 10b - a
= (100a - a) + (10b - 10b) + (1 - 100c)
= 99a + 0 + (-99)c
= 99 . [a + (-c) ] chia hết cho 9
Hãy chứng minh rằng :
A , ab+ ba chia hết cho 11
B , abc - cba chia hết cho 13
ab+ba=10a+b+10b+a=11(a+b)chia hết cho 11
abc-cba=100a+10b+c-100c-10b-a=99a-99c=3(33a-33c)chia hết cho 3 (ko phải chia hết cho 13 đâu bạn ơi)
kết bạn và bình chọn cho mik nha
ab+ba=10a+b+10b+a=11(a+b)chia hết cho 11
abc-cba=100a+10b+c-100c-10b-a=99a-99c=3(33a-33c)chia hết cho 3 (ko phải chia hết cho 13 đâu bạn ơi)
Bài 1: a) ab/abc là stn có 2/3 chữ số CMR
ab+ba chia hết cho 11
b) abc-cba chia hết cho 99
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
cho abc khác 0 CMR:
a) M=ab+ba chia hết cho 11
b)abc-cba chia hết cho 99
c)Nếu abcd chia hết cho 99 thì ab+cd chia hết cho 99
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
Chứng tỏ rằng :
a)ab + ba chia hết cho 11
b)abc - cba chia hết cho 99
a)a. ab+ba = 10a+b+10b+a = 11a+11b = 11(a+b) chia hết cho 11
=> đpcm
b) Ta có:
abc ‐ cba = 100a+10b+c‐100c‐10b‐a = ﴾100a‐a﴿ + ﴾10b‐10b﴿ ‐ ﴾100c‐c﴿ = 99a ‐ 99c = 99. ﴾a‐c﴿ chia hết cho 99 ﴾đpcm﴿