1/101+1/102+1/103+.....2009/2010+1/200 so sánh với 5/8
so sánh 1/101+1/102+...+2009/2010+1/200 và 5/8
so sánh
2010/2009 và 2011/2010
1/101+1/102+1/103+..................+1/200 và 1
AI NHANH VÀ ĐÚNG MÌNH TICK CHO!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)
\(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)
Từ (1) và (2)
Mà: \(\frac{1}{2009}>\frac{1}{2010}\)
\(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)
b) Ta có: 100 số hạng của dãy đều bé hơn 1/100
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)
So sánh A với 5/8: 1/101+1/102+1/103+...+1/200
So sánh :
1/101 + 1/102 + .........+ 2009/2010 + 1/200 và 5/8
( trình bày giúp nhé )
1/101 + 1/102 + .........+ 2009/2010 + 1/200 > 5/8
vì 2009/2010>5/8
So sánh :
1/101 + 1/102 + .........+ 2009/2010 + 1/200 và 5/8
( trình bày giúp nhé )
So sánh A với 5/8 biết : 1/101+1/102+1/103+...+1/200
so sanh:1/101+1/102+..........+2009/2010+1/200 voi 5/8
so sánh
a/\(\frac{2010}{2009}\)và\(\frac{2011}{2010}\)
b/\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...................+\frac{1}{200}\)và 1
a, Xét 2010 . 2010 = (2009+1).2010
= 2009.2010 +2010
= (2009.2010+2009)+1
= 2009.(2010+1)+1
= 2009.2011+1
>= 2009.2010
=> 2010/2009 > 2011/2010
Tk mk nha
a, \(\frac{2010}{2009}\)và \(\frac{2011}{2010}\)
Ta có:
2010.2010 = ( 2009 + 1 ) . 2010
= 2009 . 2010 + 2010
= ( 2009 . 2010 + 2019 ) + 1
= 2019 . ( 2010 + 1 ) + 1
= 2019 . 2011 + 1
\(\Rightarrow\)\(\frac{2010}{2009}>\frac{2011}{2010}\)
b, \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...........+\frac{1}{200}\)và 1
Ta có:
\(\frac{1}{101}< 1;\frac{1}{102}< 1;\frac{1}{103}< 1;........;\frac{1}{200}< 1\)
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.............+\frac{1}{200}< 1\)
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)