X x 1999 - x = 1999 x 1997 + 1999
X x 1999 - x= 1999 x 1997 + 1999
X x 1999 - x = 1999 x 1997 + 1999
X x (1999 - 1) = 1999 x (1997 + 1)
X x 1998 = 1999 x 1998
Vậy x = 1999
x nhân 1999--x=1999 nhan 1997+1999
X * 1999 - x = 1999 x 1997 + 1999
X * 1998 = 1999 x 1998
=> x = 1999
1999x-(-x)=1999.1997+1999
<=>2000x=3994002
<=>x=1997,001
Tìm X bằng cách hợp lí nhất X × 1999 × X = 1999 × 1997 + 1999
X.1999.X=1999.1997+1999
X.1999.X=1999.1997+1999.1
X.X.1999=1999.(1997+1)
X.X.1999=1999.1998
X.X=1999.1998:1999=1998
X × 1999 × X = 1999 × 1997 + 1999
X^2 x 1999 = 1999 × 1997 + 1999 x 1
X^2 x 1999 = 1999 x ( 1997 + 1 )
X^2 x 1999 = 1999 x 1998
X^2 = 1999 x 1998 : 1999
X^2 = 1999 : 1999 x 1998
X^2 = 1 x 1998
X^2 = 1998
tìm x biết:
a) 5 *x - 1952 = 2500 - 1947
b) x *1999 - x =1999 *1997+ 1999
a) 5 * x - 1952 = 2500 - 1947
5 * x -1952 =553
5 * x = 553 + 1952
5 * x =2505
x = 501
b)x * 1999 - x = 1999*1997 +1999
x * ( 1999 -1) = 1999*(1997 +1)
x * 1998 =1999 * 1998
x =1999
X x 1999 - x = 1999 x 1997 + 1999
Ai trả lời thì trình bày nha, ai không trình bày coi như tính sai
X . 1999 - x = 1999 x 1997 + 1999
X . 1999 - X x 1 = 1999 x 1997 + 1999 x 1
X . 1997 = 1999 x 1998
X . 1997 = 3994002
X = 3994002 : 1997
X = 1997001
x . 1999 - x = 1999 . 1997 + 1999
=> x.(1999 - 1) = 1999.(1997 + 1)
=> x.1998 = 1999.1998
=> x = 1999
vậy x = 1999
Dấu . là nhân nha
X x 1999 - x = 1999 x 1997 + 1999
X x 1999 - X x 1 = 1999 x 1997 + 1999 x 1
X x (1998 - 1) = 1999 x (1997 + 1)
X x 1997 = 1999 x 1998
X x 1997 = 3994002
X = 3994002 : 1997
X = 1997001
1996 x 1997 + 1998 x 3
1997 x 1999 + 1997 x 1997
1996 x 1997 + 1998 x 3 + 1994 / 1997 x 1999 - 1997 x 1997
tìm x biết:
x*1999 -x=1999*1997+1999
\(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)
\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)
\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)
\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)
\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)
Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)
=> x - 2000 = 0
=> x = 2000