Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó b khác 0.Chứng minh c=0
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho tỉ lệ thức: \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b # 0. Chứng minh rằng c = 0
Sử dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
=>\(\frac{a+b+c}{a+b-c}=1\)
=>a+b+c=a+b-c
=>c+c=a+b-a-b
=>2c=0
=>c=0
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
các anh chị ở học 24 h nào mà chuyên toán 7 thì giúp em nhé
cho tỉ lệ thức\(\frac{a+b+c}{a+b-c}\)=\(\frac{a-b+c}{a-b-c}\) trong đó b khác 0 . chứng minh c=0
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\Rightarrow a+c=a-c\Rightarrow2c=0\Rightarrow c=0\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(a-b khác 0, c-d khác 0 ) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d
=>a+b/a-b=c+d=c-d
Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)
Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)
Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
Từ \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) và b khác 0. Chứng minh c=0
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)( a - b khác 0, c - d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh răng từ tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)(a-b khác 0,c-d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho tỉ lệ thức a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0 . chứng minh rằng c = 0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1.\) (T/c dãy tỷ số băng nhau)
\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình