tinh nhanh
4/1.5+4/5.9+4/9.13+...+4/21.25
\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{21.25}\)
\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+......+\frac{3}{21.25}\)
\(=\frac{3}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{21.25}\right)\)
\(=\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{21}-\frac{1}{25}\right)\)
\(=\frac{3}{4}\left(1-\frac{1}{25}\right)\)
\(=\frac{3}{4}.\frac{24}{25}\)
\(=\frac{18}{25}\)
\(4A=3-\frac{1}{5}+\frac{3}{5}-\frac{3}{9}+\frac{3}{9}-\frac{3}{13}+...+\frac{3}{21}-\frac{3}{25}\)\(\frac{3}{25}\)
\(4A=3-\frac{3}{25}\)
\(4A=\frac{72}{25}\)
\(A=\frac{18}{25}\)
k minh ha
\(giải:\)
\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{21.25}\)
\(=3\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{3}{21.25}\right)\)
\(=\frac{3}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{21.25}\right)\)
\(=\frac{3}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\right)\)
\(=\frac{3}{4}\left(1-\frac{1}{25}\right)\)
\(=\frac{3}{4}.\frac{24}{25}\)
\(=\frac{18}{25}\)
Tính S
2/1.5+2/5.9+2/9.13+........+2/21.25
giúp mình với, mình đang cần gấp
4/1.5 + 4/5.9 + 4/9.13 +... + 1/401.405
bạn sửa số cuối tử là 4 nhé
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}=1-\dfrac{1}{405}=\dfrac{404}{405}\)
\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{401.405}\\ =1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}\\ =1-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{401}-\dfrac{1}{401}\right)-\dfrac{1}{405}\\ =1-0-0-....-0-\dfrac{1}{405}\\ =1-\dfrac{1}{405}\\ =\dfrac{404}{405}\)
4/1.5 + 4/5.9 + 4/9.13 +... + 4/177.181 + 4/181.185
\(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{177.181}+\frac{4}{181.185}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{177}-\frac{1}{181}\right)+\left(\frac{1}{181}-\frac{1}{185}\right)\)
\(=\frac{1}{1}-\frac{1}{185}\)
\(=\frac{184}{185}\)
Tính tổng M=-4/1.5-4/5.9-4/9.13-…-4/(n+4.)n
Tính tổng M=-4/1.5-4/5.9-4/9.13-…-4/(n+4.)n
Có dạng tổng quát như thế này nhé:
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)
Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
Đáp án là: \(\frac{1}{n+4}-1\)
D= 4^2/1.5+4^2/5.9+4^2/9.13+....+4^2/201.205
\(D=4\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{201.205}\right)\)
\(D=4\left(\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\left(\frac{1}{201}-\frac{1}{205}\right)\right)\)
D=4[(1-1/205)
D=4.204/205
=>D=816/205
____________________--
li-ke cho mình nhé bn Cao Minh Hoàng
Tính :
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9\cdot}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)
\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(=2100\left(1-\frac{1}{25}\right)\)
\(=2100\cdot\frac{24}{25}\)
\(=2016\)
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\frac{24}{25}\)
\(A=2016\)
\(A=8400.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\left(1-\frac{1}{25}\right)\)
\(A=8400.\frac{24}{25}=8064\)
\(->A=8064\)