Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
d, D = \(\frac{x+5}{x-4}\)
Tìm x nguyên để các biểu thức sau đạt giá trị nguyên nhỏ nhất
a, C=\(\frac{5}{x-2}\)
b, D=\(\frac{x+5}{x-4}\)
a) \(C=\frac{5}{x-2}\)
=> x-2 thuộc Ư(5) = {-1,-5,1,5}
Ta có bảng :
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
Vậy x = {-3,1,3,7}
b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}
Ta có bảng :
x-4 | -1 | -3 | -9 | 1 | 3 | 9 |
x | 3 | 1 | -5 | 5 | 7 | 13 |
Vậy x = {-5,1,3,5,7,13}
Tìm nguyên để các biểu thức sau đạt giá trị nhỏ nhất
C = \(\frac{5}{x-2}\)
D = \(\frac{x+5}{x-4}\)
Giải:
Để \(C=\frac{5}{x-2}\) đạt giá trị nhỏ nhất
\(\Leftrightarrow\frac{5}{x-2}\) phải nhỏ nhất \(\Leftrightarrow x-2\) phải lớn nhất
\(\Leftrightarrow x-2=5\Leftrightarrow x=7\)
Vậy x=7
1,Tìm x nguyên để biểu thức sau đạt giá trị nhỏ nhất:
D = \(\frac{x+5}{x-4}\)
2,Tìm x nguyên để biểu thức sau đạt giá trị lớn nhất:
C= \(\frac{5}{\left(x-3\right)^2+1}\)
D=\(\frac{4}{\left|x-2\right|+2}\)
Cho hỏi tí: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
C=5/x-2
D=x+5/x-4
Answer:
`C=\frac{5}{x-2}`
Nếu `x-2<0<=>x<2`
Nếu `x-2>0<=>C>0`
Để `C` đạt `GTNN` thì `x-2` là số nguyên âm lớn nhất
`x-2=-1`
`=>x=(-1)+2`
`=>x=1`
Vậy `C_{min}=-5` khi `x=1`
`D='frac{x+5}{x-4}`
Có `\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{1+9}{x-4}`
Để cho `D` đạt `GTNN<=>\frac{9}{x-4}` đạt `GTNN`
Nếu `x-4<0<=>x<4`
Nếu `x-4>0<=>D>0`
Để `\frac{9}{x-4}` đạt `GTNN` thì `x-4` là số nguyên âm lớn nhất
`x-4=-1`
`=>x=-1+4`
`=>x=3`
Vậy `D_{min}=-8` khi `x=3`
bài 7: tìm số nguyên để các biểu thức sau đạt giá trị nhỏ nhất
a) A=(x-1)2 + 2008
b)B= /x+4/ + 1996
c) C=5/x-2
d) D= x + 5 / x-4
a) ta thấy (x-1)^2 >/=0
->(x-1)^2 +2008>/= 0
dấu = xảy ra khi và chỉ khi (x-1)^2= 0
<=> x=1
vậy A có giá trị bằng 2008 khi và chỉ khi x=1
b) Ta có: \(\left|x+4\right|\ge0\forall x\)
\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4
Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất : C= \(\frac{5}{x-2}\)
\(\frac{5}{x-2}\) =) X x 5 = 2 x 5
=) X x 5 = 10
=) X = 10 : 5
=) X = 2
Vậy x = 2
+, Nếu x < 2 => x-2 < 0 => 5/x-2 < 0
+, Nếu x > 2 => x-2 > 0 => 5/x-2 > 0
=> để C = 5/x-2 Min thì x < 2
Mà x thuộc Z => x < = 1
=> x-2 < = -1
=> C = 5/x-2 >= 5/(-1) = -5
Dấu "=" xảy ra <=> x=-1
Vậy .........
Tk mk nha
Để x có giá trị nguyên => 5 chia hết cho x-2
=>x-2 thuộc Ư (5)=1;-1;5;-5
=>x=(3;1;7-3)
Bài 1: Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
\(C=\frac{5}{\left|x\right|-2}\)
Làm giúp mik nhé! Thanks
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
Tìm số nguyên x để biểu thức sau đạt giá trị nguyên \(D=\frac{x+5}{x-4}\)
Để D nguyên thì x + 5 chia hết cho x - 4
=> x - 4 + 9 chia hết cho x - 4
Do x - 4 chia hết cho x - 4 => 9 chia hết cho x - 4
=> \(x-4\in\left\{1;-1;3;-3;9;-9\right\}\)
=> \(x\in\left\{5;3;7;1;13;-5\right\}\)
Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Đặt \(A=\frac{9}{x-4}\)
Để D nguyên thì A phải nguyên
=> \(x-4\inƯ\left(9\right)\)
Do đo ta có bảng:
x-4 | 1 | 9 | 3 | -1 | -3 | -9 |
x | 5 | 13 | 7 | 3 | 1 | -5 |
Vậy \(x\in-5;1;3;5;7;13\)
Để D nguyên thì x + 5 chia hết cho x - 4
=> x - 4 + 9 chia hết cho x - 4
Do x - 4 chia hết cho x - 4 => 9 chia hết cho x - 4
=> $x-4\in\left\{1;-1;3;-3;9;-9\right\}$x−4∈{1;−1;3;−3;9;−9}
=> $x\in\left\{5;3;7;1;13;-5\right\}$
Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
A= \(\frac{5}{x-2}\)
Để A đạt GTNN thì \(\frac{5}{x-2}\)nhỏ nhất \(\Rightarrow\)x-2 lớn nhất và x-2 <0
Mà x\(\in\)Z\(\Rightarrow\)x-2= -1
\(\Rightarrow\)x= 1(thỏa mãn )
Khi đó A=\(\frac{5}{1-2}\)= \(\frac{5}{-1}\)= -5
Vậy Min A= -5 khi x= 1