Chứng tỏ rằng 256.88=2012
M = 2012 + 20122 + ... + 20122010
= ( 2012 + 20122 ) + ... + ( 20122009 + 20122010 )
= 2012( 1 + 2012 ) + ... + 20122009( 1 + 2012 )
= 2012.2013 + ... + 20122009.2013
= 2013( 2012 + ... + 20122009 ) chia hết cho 2013
hay M chia hết cho 2013 ( đpcm )
Tìm chữ số tận cùng của 22012 và 32012.Chứng tỏ rằng 32012+22012là số lẻ
Chứng tỏ rằng với mọi số tự nhiên n ta đều có:
(n+2012^2013)(n+2013^2012) chia hết cho 2
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
chứng tỏ rằng 8^2012-8^2011-8^2010 chia hết cho 55
Chứng tỏ rằng số sau là tích của 2 STN liên tiếp :
111...12222....2 ( 2012 c/s 1 , 2012 c/s 2 )
cho a,b thuộc n .chứng tỏ rằng 5a+3b và 13a+8b chia hết cho 2012 .thì a và b cũng chia hết cho 2012
đặt A=5a+3b B=13a+8b
vì a,b thuộc N và 5a+3b chia hết 2012
=>:13A= 13(5a+3b)=65a+39b chia hết cho 2012 (1) và 13a+8b chia hết 2012 => 5B=5(13a+8b)=65a+40b chia hết cho 2012 (2)
Từ (1) và (2) => [65a+40b - (65a + 39b)] chia hết 2012
<=> 65a+40b - 65a - 39b chia hết cho 2012
<=> b chia hết cho 12
=> 3b chia hết cho 2012 mà 5a +3b chia hết cho 2012
=> 5a chia hết cho 2012 mà UCLN(5,2012)=1
=> a chia hết cho 2012
Vậy a,b thuộc N 5a+3b và 13a+8b chia hết cho 2012 thì a và b cũng chia hết cho 2012
chia hết vì trong 1 tổng có 1 thừa số chia ko chia hết cho 2012 thì tổng sẽ ko chia hết cho 2012, mà trog 1 tổng có tất cả thừa số cùng chia hết cho 2012 thì tổng sẽ chia hết cho 2012
tích nha!!!
Bài 10 Cho P = 2009/2010+2010/2011+2012/2013+2013/2009 chứng tỏ rằng P>5
10.
Sửa lại đề :Cho \(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\).Chứng tỏ rằng P<5.
\(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\)
\(P=\dfrac{2011}{2012}\)
\(\Rightarrow P< 5\)
cho a,b thuộc n .chứng tỏ rằng nếu 5a+3b và 13a +8b cùng chia hết cho 2012 thì a và b cũng chia hết cho 2012
Cho a, b N. Chứng tỏ rằng nếu 5a + 3b và 13a + 8b cùng chia hết cho 2012 thì a và b cũng chia hết cho 2012.
Các bạn xem mình làm có đúng ko ??
Ta có: 5a + 3b chia hết cho 2012 => 13(5a+3b) chia hết cho 2012
=> 65 a + 39b chia hết cho 2012 (1)
Lại có: 13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012
=> 65 a + 40b chia hết cho 2012 (2)
Từ (1)(2) => (65a + 40b) – (65a+39b) chia hết cho 2012
=> b chia hết cho 2012
Tương tự => a chia hết cho 2012
Vậy a, b cũng chia hết cho 2012
bạn làm đúng rồi , Hùng ạ ; còn phần tiếp theo bạn cũng làm tương tự sẽ ra kết quả
ủng hộ nha
ta có : 5(13a + 8b) - 13(5a + 3b) chia hết cho 2012
=> (65a + 40b) - (65a + 39b) chia hết cho 2012
=> b chia hết cho 2012
mà (13a + 8b) - (5a + 3b) chia hết cho 2012
=> 8a + 5b chia hết cho 2012
mà b chia hết cho 2012
=> a cũng chia hết cho 2012
ĐCPCM
Cho A= 2012^2012+2^2012 và B= 2012^2012
Chứng tỏ rằng khi biểu diễn A, B dưới dạng các số tự nhiên thì số chữ số của Avà số chữ số chữ số của B là bằng nhau