ìm ngiệm nguyên của phương trình: 3x^2+5y^2=345
tìm ngiệm nguyên của phương trình \(3x^2+5y^2=345\)
Ta có: 5y2 chia hết cho 5; 345 chia hết cho 5.
Vậy: 3x2 phải chia hết cho 5.
=> x chia hết cho 5
Trường hợp 1: x = 0
=> PT vô nghiệm.
Trường hợp 2: x = 5
=> PT vô nghiệm
Trường hợp 3: x = 10
=> PT có nghiệm x = 10; y = 3
Trường hợp 4: x >= 15
=> VT > VP
=> PT có nghiệm duy nhất: x = 10, y = 3.
Tìm nghiệm nguyên của phương trình:
3x2 + 5y2 = 345
Mình chưa học phương trình nên giải theo cách của lớp dưới thôi :)))
Vì \(\hept{\begin{cases}345⋮5\\5y^2⋮5\end{cases}}\Rightarrow3x^2⋮5\)
Mà \(\left(3;5\right)=1\Rightarrow x^2⋮5\Rightarrow x⋮5\)
Lại có \(3x^2\le345\Rightarrow x^2\le115\Rightarrow\left|x\right|\le10\)
Mà \(x⋮5\Rightarrow x\in\left\{0;\pm5;\pm10\right\}\)
\(x=0\Rightarrow y^2=\frac{345}{5}=69\)không phải số chính phương\(x=\pm5\Rightarrow3.25+5y^2=345\)\(\Rightarrow y^2=\frac{345-3.25}{5}=54\)không phải số chính phương
\(x=\pm10\Rightarrow3.100+5.y^2=345\)\(\Rightarrow y^2=\frac{345-3.100}{5}=9\Rightarrow y=\pm3\)
Vậy \(\left(x;y\right)\in\left\{\left(10;3\right);\left(10;-3\right);\left(-10;3\right);\left(-10;-3\right)\right\}\)
\(3x^2+5y^2=345=>x^2=\frac{345-5y^2}{3}=>x=\sqrt{\frac{345-5y^2}{3}}\)
MODE 7 (TABLE) nhập \(f\left(x\right)=\sqrt{\frac{345-5X^2}{3}}\)
start -9 end: 9 ,step=1
tìm đc \(\left(x;y\right)=\left(10;3\right);\left(3;10\right);\left(-10;-3\right);\left(-3;-10\right)\)
đây là sử dụng máy tính casio
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqquuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Tìm nghiệm nguyên của phương trình 3.x2+5y2=345.
tìm nghiệm nguyên của pt: 3x^2 + 5y^2 =345
Nhận xét: 345 và 5y^2 chia hết cho 5 nên 3x^2 chia hết cho 5 => x^2 chia hết cho 5 mà 3x^2 < 345 => x^2 < 345 : 3 = 115
=> x^2 = 25; 100 => y2 = 54 hoặc 9
=> chọn x^2 = 100 và y^2 = 9
=> x = 10 ; -10
y = 3; -3
Nếu phương trình \(3x^2+5y=28\) có ngiệm nguyên (\(x_0;y_0\)) thì \(x_0\)chia cho 5 có số dư là .......................................
các bạn giải giúp mình nha
28 chia cho 5 dư 3, 5y chia hết cho 5 => 3x2 chia cho 5 dư 3
=> x2 chia cho 5 dư 1
=> x chia cho 5 dư 1 hoặc 4
Tìm nghiệm nguyên của phương trình
a) \(x^6+3x^2+1=y^4\)
b) \(3x^2+5y^2=345\)
c) \(x^3+2x^2+3x+2=y^3\)
Tìm nghiệm nguyên của đa thức 3x2+5y2=345
Giải phương trình ngiệm nguyên
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
Giải phương trình nghiệm nguyên 1)x^2-6x+54=y^2
2) x^2+3y^2=21
3)x^2+21=y^2
4)x^2+2y-2y^2=5
5)xy-x-y=2002
6)3x^2-12x+5y^2=57
7)x^2+x+1=(y^2+y+1)^2
8)x^2+xy+y^2=x^2y^2
9)3x^2+5y^2=345
10)x^6+3x^2+1=y^4