Tìm hai số hữu tỷ a và b (b # 0) sao cho
a + b= a x b= a : b
Cho hai số a, b. Biết rằng a + b và a − b là hai số hữu tỷ. Hỏi a, b có phải là số hữu tỷ không?
Vì sao?
Ta có a+b và a-b là số hữu tỉ
suy ra (a+b) + (a-b) = 2a là số hữu tỉ
Suy ra a là số hữu tỉ
Tương tự , b cũng là số hữu tỉ
Tìm 2 số hữu tỷ a và b biết rằng hiệu của a và b bằng thương của a và b và bằng hai lần tổng của a và b
Bài 3
Xét xem các số a,b có thể là số hữu tỷ không nếu
a, a + b và a - b đều là số hữu tỷ
b, 2a + b và 3a - 2b đều là số hữu tỷ
ta có :
a. \(a=\frac{\left(a+b\right)+\left(a-b\right)}{2}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
b. \(a=\frac{2\left(2a+b\right)+\left(3a-2b\right)}{7}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn 3a − 2b và 2a + 5b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn a − 2b và 3a + 4b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
\(\hept{\begin{cases}a-2b\inℚ\\3a+4b\inℚ\end{cases}}\Rightarrow2\left(a-2b\right)+\left(3a+4b\right)=5a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.
Cho các số thực a, b thỏa mãn a + 3b và 3a − 2b đều là các số hữu tỷ. Chứng minh a, b đều
là các số hữu tỷ. ^^
ta có :
\(a=\frac{2\left(a+3b\right)+3\left(3a-2b\right)}{11}\) nên a là số hữu tỉ
\(b=\frac{-3\left(a+3b\right)+\left(3a-2b\right)}{-11}\) nên b là số hữu tỉ