Rút gọn phân thức: \(\frac{\text{x^2+y^2-z^2-2zt+2xy-t^2}}{x^2-y^2+z^2-2yt+2xz-t^2}\)
Rút gọn phân thức: E= \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2yt+2xz-t^2}\)
1.Chứng minh \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2}{x-y+z-t}-2zt+2xz-t^2\)
2.Rút gọn X= \(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cmr:\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2zt+2xz-t^2}=\frac{x+y-z+t}{x-y+z-t}\)
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2ty+2xz-t^2}=\frac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2ty+t^2\right)}=\)
\(\frac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}=\frac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{\left(x+z-y-t\right)\left(x+z+y+t\right)}=\frac{x+y-z-t}{x+z-y-t}\)
ủa? là mình làm sai hay bạn ghi đề sai vậy?
(x^2+2xy+y^2)-(z^2+2zt+t^2) tương tự vé dưới
Đưa về a^2-b^2=(a-b)(a+b)
Rút gọn là xong
rút gọn phân thức
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
1) CM:
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2-2zt+2xz-t^2}{x-y+z-t}\)
2) Rut gon
\(\frac{\left(2^{4+4}\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
Cho phân thức : A = x mũ 2 + y mũ 2 - z mũ 2 + 2xy/x mũ 2 - x mũ 2 + z mũ 2 + 2xz. Rút gọn phân thức rồi tính giá trị của biểu thức x = 0,y = 2009, z = 2010
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
rút gọn phân thức
(x^2+y^2+z^2-2xy+2xz-2yz)/(x^2-2xy+y^2-z^2)
bạn nào làm ra cách giải sớm mình cho 3tick
Rút gọn phân thức:
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(\frac{\left(x-y\right)^3+3xy\left(x+y\right)+y^3}{x-6y}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)
\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)
\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)
\(=\frac{x^3+6xy^2}{x-6y}\)
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)
\(=\frac{3x^2.\left(x-1\right)-4x.\left(x-1\right)+\left(x-1\right)}{2x^2.\left(x-1\right)+x.\left(x-1\right)-3.\left(x-1\right)}\)
\(=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\)
\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)
\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{2x.\left(x-1\right)+3.\left(x-1\right)}\)
\(=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+3\right)}\)
\(=\frac{3x-1}{2x+3}\)