A=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
Tìm đkxd và rút gọn
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
aTìm đkxd
bRút gọn
c Tìm x để A<\(\frac{1}{3}\)
BT1
a.A=\(\frac{2+\sqrt{x}}{x-9}\)
b Q=\(\frac{\sqrt{x}-1}{x}+\frac{2\sqrt{x}-1}{x+\sqrt{x}}\)
c.M=\(\frac{2+3\sqrt{x}}{x-5}\)
BT2
Cho P=\(\left(1+\frac{1}{\sqrt{x}-1}\right)-\frac{1}{x-\sqrt{x}}\)
a Tìm đkxd
b rút gọn
c tính p khi x=25
d Tính P khi \(x=\sqrt{5+2\sqrt{6}}\)
Câu 1: Điều kiện xác định
a/ \(\hept{\begin{cases}x\ge0\\x-9\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}}\)
b/ \(Q=\frac{\sqrt{x}-1}{x}+\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(\hept{\begin{cases}x>0\\\sqrt{x}+1\ne0\end{cases}\Rightarrow x>0}\)
c/ \(\hept{\begin{cases}x\ge0\\x-5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne5\end{cases}}}\)
Câu 2:
a/ ĐKXĐ: \(\hept{\begin{cases}x>0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b/ \(P=\left(1+\frac{1}{\sqrt{x}-1}\right)-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c/ Thay x = 25 vào P ta được: \(P=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
d/ Ta có: \(P=\frac{\sqrt{5+2\sqrt{6}}+1}{\sqrt{5+2\sqrt{6}}}=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+1}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}=\frac{\sqrt{3}+\sqrt{2}+1}{\sqrt{3}+\sqrt{2}}\)
Cho A= \(\frac{\sqrt{x}}{\sqrt{x-5}}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}-5}\)
a) Rút gọn bt A
b) Tìm x để A< \(\frac{1}{3}\)
Rút gọn A=\(\left(\frac{5\sqrt{x}+50}{x+5\sqrt{x}}+\frac{2\sqrt{x}-10}{\sqrt{x}}+\frac{x}{5\sqrt{x}+25}\right).\frac{7}{15+3\sqrt{x}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
1) Tìm ĐKXĐ. Rút gọn A.
2)Tính A khi \(x=9-4\sqrt{2}\)
3)Tìm Xđể A<\(\frac{1}{3}\)
cho A=\(\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
a. rút gọn A
b. tìm các giá trị của x để A<0
a) A = \(\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
= \(\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
Vậy A = \(\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
b) ĐKXĐ : \(x\ge0;x\ne25\)
A<0 => \(\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
Mà \(\sqrt{x}+5>0\Rightarrow\sqrt{x}-5< 0\Rightarrow x< 25\) kết hợp với ĐKXĐ => \(0\le x< 25\)
Cho biểu thức
A= \(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a, Rút gọn A
b, Tìm x để A<1
ĐKXĐ : \(x\ge0,x\ne25,x\ne9\)
a) \(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\left(\frac{-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=-\frac{5}{\sqrt{x}+5}:\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}=\frac{-5}{\sqrt{x}+5}.\left(\frac{-\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\right)=\frac{5}{\sqrt{x}+3}\)
b) \(A< 1\Rightarrow\frac{5}{\sqrt{x}+3}< 1\Rightarrow\sqrt{x}+3>5\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Chú ý kết hợp với điều kiện xác định.
cho Q=\(\left(\frac{4\sqrt{X}}{2+\sqrt{X}}+\frac{8}{4-X}\right):\left(\frac{\sqrt{X}}{X-2\sqrt{X}}-\frac{2}{\sqrt{X}}\right)\)
a. tìm đkxd của Q
b. rút gọn Q
a,Cho biểu thức:\(M=\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-2}+\frac{2\sqrt{x}+10}{x+6\sqrt{x}5}\right)\)
Rút gọn M và tìm x để M>1