tính giúp mình với
\(\left(\sqrt{10}+\sqrt{6}\right)\cdot\left(\sqrt{8-2\sqrt{15}}\right)\)Tính: a. \(\left(3\sqrt{2}+\sqrt{6}\right)\cdot\left(6-3\sqrt{3}\right)\)
b. \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c. \(\left(3-\sqrt{5}\right)\cdot\left(10-\sqrt{2}\right)\cdot\sqrt{3+\sqrt{5}}\)
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(6-3\sqrt{3}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+1\right)\times3\left(2-\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(4-2\sqrt{3}\right)\)
\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)^2\)
\(=\dfrac{3\sqrt{6}}{2}\left(3-1\right)\left(\sqrt{3}-1\right)\)
\(=3\sqrt{6}\left(\sqrt{3}-1\right)\)
https://hoc24.vn/hoi-dap/question/405366.html
\(\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
= 5 - 3
= 2
\(\left(\sqrt{2}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{6}+1\right)\cdot\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Giúp mình giải bài trên với ạ. Cần gấp. Đầu bài yêu cầu: Tính
Tính
A=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
B=\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
C=\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{ }}3}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
E=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{5}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
Thực hiện các phép tính sau:
a, \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{\sqrt{3}+2}\)
b, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c, \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
d, \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
Tính:
a)\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b)\(\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{15}-4\right)\sqrt{4+\sqrt{15}}\)
Giúp mình với nha
a) \(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2.2}=\sqrt{4}=2\)
b) \(=\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{8+2\sqrt{15}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{15}-4\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)^2\left(\sqrt{15}-4\right)=2\left(4+\sqrt{15}\right)\left(\sqrt{15}-4\right)\)
\(=-2\)
TÍNH :
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}\cdot\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(B=\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(C=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(D=\left[4+\sqrt{15}\right]\left[\sqrt{10}-\sqrt{6}\right]\cdot\sqrt{4-\sqrt{15}}\)
\(E=\left[3-\sqrt{5}\right]\cdot\sqrt{3+\sqrt{5}}\text{ }+\left[3+\sqrt{5}\right]\cdot\sqrt{3-\sqrt{5}}\)
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)
\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
BT: Tính
a, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
b,\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
c,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
Ta có: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{2}.\sqrt{4+\sqrt{15}}\right).\left(\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8+2\sqrt{15}}.\left(16-15\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\sqrt{5}+2\sqrt{5}.\sqrt{3}+\sqrt{3}}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
Học tốt nha ^_^
\(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)