Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bình Nguyễn Ngọc
Xem chi tiết
Nguyễn Huy Tú
29 tháng 1 2017 lúc 8:51

Bài 1:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

\(\Rightarrow A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow A=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

Bài 2:
Giải:
Ta có: \(2n-3⋮n+1\)

\(\Rightarrow\left(2n+2\right)-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Vậy ...

Qanhh pro
Xem chi tiết
Suri Anh
7 tháng 12 2019 lúc 19:32

a, S= 3+\(^{ }3^2\)+\(3^3\)+....+\(^{ }3^{100}\)

3xS= \(3^2+3^3+...+3^{100}+3^{101}\)

3xS - S= \(3^{101}\)-3

2xS= \(3^{101}\)-3

S= \(3^{101}\)-3/2

Ta xét:

\(3^{101}\)= \(\left(3^4\right)^{25}\)x3= \(81^{2005}\) x3=(...1) x (...3)=(...3)

Vậy chữ số tận cùng của S là 1.

Chúc bạn học có hiệu quả!

{\_/}

(^.^)

(>❤

Khách vãng lai đã xóa
vu duc huy
Xem chi tiết
Napkin ( Fire Smoke Team...
3 tháng 3 2020 lúc 9:43

\(S=\frac{1}{100}-\frac{2}{100}+\frac{3}{100}-...-\frac{98}{100}+\frac{99}{100}-\frac{100}{100}\)

\(=\frac{1-2+3-...-98+99-100}{100}\)

\(=\frac{\left[\left(1-2\right)+\left(3-4\right)+...+\left(97-98\right)+\left(99-100\right)\right]}{100}\)

\(=\frac{-1-1-1-...-1}{100}=\frac{-1.50}{100}=\frac{-50}{100}=\frac{-1}{2}\)

Vậy S=\(\frac{-1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 3 2020 lúc 9:45

\(S=\frac{1}{100}-\frac{2}{100}+\frac{3}{100}-\frac{4}{100}+\frac{5}{100}-...-\frac{98}{100}+\frac{99}{100}\)

\(S=\frac{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+....+\left(97-98\right)+\left(99-100\right)}{100}\)

\(S=\frac{-1+\left(-1\right)+\left(-1\right)+.....+\left(-1\right)+\left(-1\right)}{100}\)

Từ 1 đến 100 có 100 số số hạng => Có 50 cặp => có 50 số (-1)

=> \(S=\frac{50\cdot\left(-1\right)}{100}=\frac{-50}{100}=\frac{-1}{20}\)

Khách vãng lai đã xóa
lêvinhlinh
31 tháng 12 2020 lúc 11:39

tseêre567889933333

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Nhật Hạ
26 tháng 5 2019 lúc 17:31

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)

\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\)

\(A=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{101}\right)\)

Tự tính 

Xyz OLM
27 tháng 5 2019 lúc 14:19

  \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\)

    \(=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)

   \(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)

   \(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

    \(=2\left(\frac{1}{2}-\frac{1}{101}\right)\)

    \(=2.\frac{99}{202}\)

     \(=\frac{99}{101}\)

Phương Trình Hai Ẩn
Xem chi tiết
Tài Nguyễn Tuấn
6 tháng 5 2016 lúc 20:29

Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!

Theo mình thì đề phải là \(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\).

Ta có : 

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+...+100}\)

\(=>A=3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\right)\)

Đặt \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\) là B. Ta có : 

\(B=\)\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\)

\(=>B=\frac{1}{1}+\frac{1}{\left(1+2\right)\cdot2:2}+\frac{1}{\left(1+3\right)\cdot3:2}+\frac{1}{\left(1+4\right)\cdot4:2}+...+\frac{1}{\left(1+100\right)\cdot100:2}\)

\(=>B=\frac{1}{1}+\frac{1}{3\cdot2:2}+\frac{1}{4\cdot3:2}+\frac{1}{5\cdot4:2}+...+\frac{1}{101\cdot100:2}\)

\(=>B=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{100\cdot101}\)

\(=>B=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}\right)\)

\(=>B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=>B=2\left(1-\frac{1}{101}\right)\)

\(=>B=2\cdot\frac{100}{101}=\frac{200}{101}\)

\(=>A=3B=3\cdot\frac{200}{101}=\frac{600}{101}\)

Chúc bạn học tốt!

Lê Xuân Đạt
6 tháng 5 2016 lúc 20:24

Mình không biết 

pham huu huy
6 tháng 5 2016 lúc 20:33

kho qua

Luong Dinh Sy
Xem chi tiết
Hùng Hoàng
Xem chi tiết
Lê Linh Hà
6 tháng 12 2015 lúc 22:49

đăng làm gì cho mỏi tay

Do minh linh trang
Xem chi tiết
Kiriya Aoi
Xem chi tiết
Clowns
3 tháng 2 2019 lúc 18:03

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

Chàng Trai 2_k_7
4 tháng 5 2019 lúc 21:15

6 ở đâu hả https://olm.vn/thanhvien/aihaibara0