Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Phương Anh
Xem chi tiết
Pham Van Hung
10 tháng 10 2018 lúc 18:57

ý a bạn có chắc viết đề bài đúng không

Trần Hoàng Phương Anh
10 tháng 10 2018 lúc 20:14

đề bài đúng mà

Trần Mai Anh
Xem chi tiết
Võ Đông Anh Tuấn
5 tháng 11 2016 lúc 9:54

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-c\right)\)

Do : \(a^3+b^3+c^3=3abc\)\(a+b+c\ne0\) nên \(a^2+b^2+c^2-ab-bc-ac=0\)

Dễ dàng suy ra \(a=b=c\).Vậy \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}.\)

Phạm Thùy Linh
Xem chi tiết
Lightning Farron
22 tháng 10 2016 lúc 12:28

Câu 1:

Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

Lightning Farron
22 tháng 10 2016 lúc 12:49

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

Lightning Farron
22 tháng 10 2016 lúc 12:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

Xét \(a+b+c=0\)\(\Rightarrow\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\)

\(\Rightarrow A=\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

\(=\left(1-1-\frac{c}{b}\right)\left(1-1-\frac{a}{c}\right)\left(1-1-\frac{b}{a}\right)\)

\(=\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)=-1\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a-b=b-c=c-a=0\Leftrightarrow a=b=c\)

\(\Leftrightarrow A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

 

yushi hatada
Xem chi tiết
Nguyễn Việt Hoàng
5 tháng 12 2019 lúc 12:57

Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà \(a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Khách vãng lai đã xóa
phùng thị thu hải
Xem chi tiết
Nguyễn Lê Hoàng
12 tháng 3 2017 lúc 21:21

A=1/2 nhé , lấy ví dụ ra là được 

Huy Nguyễn Đức
12 tháng 3 2017 lúc 23:13

từ pt trên bạn pt đa thức thành nhân tử được (a+b+c)(a^2-ab+b^2-ac-bc+c^2)=0 

mà a+b+c khác 0 nên a^2-ab+b^2-ac-bc+c^2=0

2(a^2-ab+b^2-ac-bc+c^2)=0

(a-b)^2+(a-c)^2+(b-c)^2=0

suy ra a=b=c 

suy ra A=1/3 

Trà My
13 tháng 3 2017 lúc 0:30

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

<=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

mà ​​\(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)<=>\(a^2+b^2+c^2=ab+bc+ca\)

=>\(A=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2\left(a^2+b^2+c^2\right)}\)

\(=\frac{a^2+b^2+c^2}{3\left(a^2+b^2+c^2\right)}=\frac{1}{3}\)

Nguyễn Khắc Quang
Xem chi tiết
Đoàn Đức Hà
29 tháng 1 2021 lúc 22:35

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)(vì \(a+b+c\ne0\))

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2+2\left(a^2+b^2+c^2\right)}=\frac{1}{3}\)

Khách vãng lai đã xóa
phùng thị thu hải
Xem chi tiết
Phạm Gia Kiên
5 tháng 3 2017 lúc 22:30

đáp án : 1

TVG
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 12 2020 lúc 21:22

a3 + b3 + c3 = 3abc

⇔ ( a3 + b3 ) + c3 - 3abc = 0

⇔ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇔ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇔ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇔ ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0

⇔ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇔ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Từ đây tự làm tiếp nhé :))

Khách vãng lai đã xóa

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)[\left(a+b+c\right)^2-3ac-3bc-3ab]=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

​Để \(N\)có nghĩa thì \(\left(a+b+c\right)^2\ne0\)

Hay \(a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall c,a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow a=b=c\)

Thay \(a=b=c\)vào \(N\), ta có : \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy \(N=\frac{1}{3}\)

Khách vãng lai đã xóa
Cáo Nô
Xem chi tiết