Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akira Kuro
Xem chi tiết
Vi Linh Chi
Xem chi tiết
Minh Bui Tuan Minh
4 tháng 8 2016 lúc 22:43

pn lấy đề ở đâu vậy ?

Vi Linh Chi
5 tháng 8 2016 lúc 9:57

Ở lớp học thêm c ạ

Vy Hoàng
Xem chi tiết
king song u
3 tháng 9 2019 lúc 15:17

A= ( \(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\) ) + (\(\sqrt{20}\) + \(\sqrt{40}\) + \(\sqrt{60}\))

= (1+1,4+1,7)+(4,4+6,3+7,7)

= 4,1+18,4

=22,5

Kan
Xem chi tiết
Xyz OLM
29 tháng 1 2022 lúc 15:42

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

Khách vãng lai đã xóa
Yen Nhi
30 tháng 1 2022 lúc 20:23

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết
Huyền Thụn
Xem chi tiết
 Mashiro Shiina
23 tháng 11 2017 lúc 1:04

Ta sẽ chứng minh 1 bđt sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

\(\Rightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Rightarrow a+2\sqrt{ab}+b-a-b\ge0\)

\(\Rightarrow2\sqrt{ab}\ge0\) *đúng*

Dấu "=" xảy ra khi: \(ab=0\)

Trở lại bài toán,vì không có thừa số nào bằng 0,nên ta dễ dàng có: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

Hay \(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}=\left(\sqrt{1}+\sqrt{20}\right)+\left(\sqrt{40}+\sqrt{2}\right)+\left(\sqrt{60}+\sqrt{3}\right)>\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}=A\)

Linh
Xem chi tiết
Moon
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:45

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

Nuyen Thanh Dang
Xem chi tiết