Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Băng Băng
Xem chi tiết
Đạt TL
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 7 2020 lúc 20:52

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

Khách vãng lai đã xóa
tth_new
21 tháng 7 2020 lúc 7:43

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

Khách vãng lai đã xóa
Đạt TL
17 tháng 7 2020 lúc 12:39

Đọc xong lú luôn @_@. Khúc đầu chả hiểu gì hết 

mà thôi cũng phải tk ông a 1 cái vì có tâm với nghề

Khách vãng lai đã xóa
Nguyễn Hương Giang
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Thắng Nguyễn
13 tháng 9 2017 lúc 12:43

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{a^2+b^2}\ge c-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\ge\left(a+b+c\right)-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Khi \(a=b=c=1\)

Nguyễn Việt Hoàng
12 tháng 9 2017 lúc 22:17

 ta biến đổi a^2/(a+b^2)=a^3/a(a+b^2) áp dụng bất đẳng thức cosi cho 3 số a^3/a(a+b^2) ,a/2,a+b^2 
ta đc a^3/a(a+b^2)+a/2+(a+b^2)/a>= 3a/2 tương tự b^3/b(b+c^2)+b/2+(b+c^2)/4>=3b/2 
c^3/c(c+a^2)+c/2+(c+a^2)/4>=3c/2 
đặt biểu thức đầu là P Ta có P +(a+b+c)/2+(a+b+c+a^2+b^2+c^2)/4>=3/2(a+... 
mặt khác (a+b+c)^2=<3(a^2+b^2+c^2) => a^2+b^2+c^2>=3 
thay vào =>P>=3/2 DẤU "=" XẢY RA <=> A=B=C=1 
CHÚC BẠN THÀNH CÔNG

Vũ Thảo Vy
Xem chi tiết
Incursion_03
23 tháng 12 2018 lúc 8:18

Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)

Kết hợp với bđt Cô-si cho 2 số dương ta đc

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)

                                   \(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)

                                       \(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)

                                        \(=a^2+b^2+c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)

Áp dụng bđt Cô-si cho 2 số dương

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

Cộng từng vế của 6 bđt trên lại ta đc

\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)

 \(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)

\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)

                          \(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)

Mà a,b,c là các số dương nên a = b = c  = 1

Vậy ............

fan FA
Xem chi tiết
tth_new
16 tháng 1 2019 lúc 19:38

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:41

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

tth_new
6 tháng 5 2019 lúc 18:55

Thấy mọe rồi,lúc đó t ngốc quá nên làm nhầm.

PINK HELLO KITTY
Xem chi tiết
nơi bóng ma ghé qua
Xem chi tiết
zZz Cool Kid_new zZz
7 tháng 8 2020 lúc 15:10

\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)

\(\Leftrightarrow\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)

\(\Leftrightarrow\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le3\)

\(\frac{a^2b}{2+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{\sqrt[3]{a^4b^2}}{3}=\frac{a\sqrt[3]{ab^2}}{3}\)

Tương tự thì ta cần chứng minh \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca^2}\le6\)

Oke phần còn lại dành cho bạn ;D

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 14:13

Khúc cuối nhầm kìa bác Coolkid

\(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca^3}\le3\)

Khách vãng lai đã xóa
Vuong Ngoc Nguyen Ha (Ga...
Xem chi tiết
tth_new
27 tháng 3 2019 lúc 6:28

b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:

\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)

\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1