cho tam giác ABC cân tại A kẻ AM vuông góc với BC (M thuộc BC ) chứng minh ∆ABM=∆ACM
Cho tam giác ABC cân tại A, kẻ AM vuông góc BC(M thuộc BC) a) Chứng munh tam giác ABM=tam giác ACM b) Kẻ MI Vuông góc AB(I€AB); MK vuông góc AC(K € AC). Chứng minh MI=MK c) Chứng minh AM vuông góc IK €:thuộc
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>AI=AI và MI=MK
c:AI=AK
MI=MK
=>AM là trung trực của IK=>AM vuông góc IK
cho tam giác abc cân tại a kẻ am vuông góc bc ( m thuộc bc ) .a)biết ab = 5 cm ; am =4cm tính mb b) chứng minh tam giác abm = tam giác acm c) kẻ mi vuông góc ab( I thuộc ab ); mk vuông góc ac ( k thuộc ac ) chứng minh mi = mk d) chứng minh am vuông góc Ik ( mng giúp mik vs ạ tks nhiều , giải theo cách cấp 2 thôi nha mng lớp 7 ý ) :)))
Cho tam giác ABC cân tại A, kẻ AM vuông góc với BC (M thuộc BC). a) Chứng minh tam giác ABM = tam giác ACM. b)Kẻ MK//AB (K thuộc AC). Chứng minh AK=KM Mọi người giải giúp mình câu b thôi nhé, cảm ơn mọi người ạ
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Ta có: ΔAMC vuông tại M
mà MK là đường trung tuyến
nên KA=KM
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
BM=CM(M là trung điểm của BC)
\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)
Suy ra: ME=MF(hai cạnh tương ứng)
Xét ΔEMF có ME=MF(cmt)
nên ΔEMF cân tại M(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A, Bx vuông góc BC,Cy vuông góc AC, M là giao điểm của Bx và By
a) tam giác ABM bằng tam giác ACM
b) chứng minh: AM vuông góc BC
c) kẻ BN vuông góc AC( N thuộc AC) gọi I là giao điểm BN với AM. Chứng minh tam giác BIM cân
d) chứng minh CI vuông góc AB
cho tam giác abc cân tại a tia pg am m thuộc bc sao cho mb=mc từ m kẻ md vuông góc với ab me vuông với ac CM tam giác abm = tam giác acm am vuông góc với bc ad =ae góc amd = góc ame
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là phân giác
nên AM là đường cao
c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có
AM chung
\(\widehat{MAD}=\widehat{MAE}\)
Do đó: ΔAMD=ΔAME
Suy ra: AD=AE
cho tam giác abc cân tại a.gọi m là trung điểm bc
a,c/m tam giác abm=tam giác acm;am vuông góc vs bc(c/m)
b,kẻ me vuông góc ab tại e,me vuông góc ac tại f.chứng minh tam giác emf cân tại m
c,ef//bc(chứng minh song song)
GIẢI NHANH GIÚP MÌNH VỚI Ạ!!!!!!
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân