Cho tam giác abc ko cân tại a, có phân giác góc ngoài tại đỉnh a cắt đường thẳng bc tại điểm m. Khi đó ta có:
A. MB/MC=AM/AC
B. MB/MC=AC/AB
C. MC/MB=AC/AB
D. MC/MB=AC/AB
cho tam giác ABC , M nằm trong tam giác ABC . MB cắt AC tại D
CMR :
a, MB+MC < DB+DC
b, MB+MC <AB +AC
c , MB+MC+MA <AM+BC+AC
dùng bất đẳng thức tam giác!!!!!!!!
758769
1. Cho tam giác ABC vuông cân tại A, M nằm giữa B và C.Chứng minh MA2 = MB2+MC2
2. Cho tam giác ABC, Ax là tia phân giác của góc ngoài đỉnh A. M thuộc Ax, M khác A.Chứng minh MB+MC > AB+AC.
B1:Cho tam giác ABC vuông tại A (AB<AC), đường phân giác BM. Trên tia đối của MB lấy D sao cho MB=MD. Qua D kể đường thẳng vuông góc với AC tại N và cắt BC tại E. Cmr: MN<MC
B2:Cho tam giác ABC cân tại A, AB=5cm, BC=6cm. Trung tuyến BM và CN cắt nhau tại G. E là điểm nằm giữa A và G. Cmr: AB-AM>EB-EM
Cho tam giác ABC có AB>AC, đường phân giác góc A cắt BC tại D, lấy m thuộc đoạn AD. So sánh MB - MC < AB - AC
CHO TAM GIÁC ABC VUÔNG TẠI A(AB<AC), TIA P.GIÁC CỦA GÓC B CẮT AC TẠI M. TRÊN TIA ĐỐI CỦA TIA MB LẤY D SAO CHO MB=MD, TỪ ĐIỂM D VẼ ĐƯỜNG THẲNG VUÔNG GÓC VS AC TẠI N VÀ CẮT BC TẠI E. CMR MN<MC
tham khảo
kẻ thêm MK⊥BC⊥BC
ta có ΔABM=ΔKBM(ch.cgn)ΔABM=ΔKBM(ch.cgn)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90oo, cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh ΔMND=ΔMAB(ch.cgn)ΔMND=ΔMAB(ch.cgn)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)
Cho ΔABC có góc B là góc tù. Tia phân giác góc ngoài tại A cắt BC kéo dài tại M. Từ B kẻ đường thẳng song song với AM cắt AC tại N. Chứng minh MB/MC = NA/ AC
Cho tam giác ABC có AB = 6cm; AC = 8cm; BC = 11cm. Tia phân giác của góc A cắt BC tại M. Tính độ dài các đoạn thẳng MB và MC.
zì tam giác ABC có tia phân giác AM
=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)
mà BM+MC=11 (2)
Từ 1 zà 2 ta có hệ phương trình
\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)
\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC tại M. Trên tia đối của tia MA lấy điểm D sao cho MD = MA . Chứng minh :
a) MB = MC b) AB // CD c) AM BC
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC