ss: 2016/2017+2017/2016 và 2014/2015+2015/2014
so sánh P và Q biết : P= 2014/2015 + 2015/2016 + 2016/2017 và Q = 2014 + 2015 +2016/ 2015 +2016 + 2017
so sánh
(2016/2017)/(2017/2016) và (2014/2015)/(2015/2014)
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Tinh A= 2014/2015+2015/2016+2016/2017+2017/2014 hay so sanh A voi 4
=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)
=1+1+1+1
=4
vậy A=4 (4=4)
So sánh 2 phân số sau\(\frac{2014+2015+2016}{2015+2016+2017}\) và \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
So sánh M và N biết:
M=\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
N=\(\frac{2014+2015+2016}{2015+2016+2017}\)
m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
evaluate the follwing:A= 2015 +2016 +2017/ 2014+2015+2016+2017+2018
kết quả bằng 12098.00149 chắc là vậy :v
so sánh P và Q
\(P=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
\(Q=\frac{2014+2015+2016}{2015+2016+2017}\)
Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q
Suy ra : P < Q
Vậy P < Q.
Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy :P>Q
Chứng minh
\(Â=\dfrac{2013}{2013+2014}+\dfrac{2014}{2014+2015}+\dfrac{2015}{2015+2016}+\dfrac{2016}{2016+2017}< 2\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)
Tương tự cộng theo vế suy ra đpcm