cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC( H thuộc BC)
a, CM tam giác AHB = AHC
b, Lấy điểm M là trung điểm của AC. Trên tia đối của tia MH lấy điểm E sao cho ME =MH.CM AH = CE
Các bn vẽ hình và lm nhanh giúp mik ạ mik đg vội !!!!
cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC( H thuộc BC)
a, CM tam giác AHB = AHC
b, Lấy điểm M là trung điểm của AC. Trên tia đối của tia MH lấy điểm E sao cho ME =MH.CM AH = CE
c, CM HM// AB
Các bn vẽ hình và lm nhanh giúp mik ạ mik đg vội !!!!
cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC( H thuộc BC)
b, Lấy điểm M là trung điểm của AC. Trên tia đối của tia MH lấy điểm E sao cho ME =MH.CM AH = CE
Xét ΔMAH và ΔMCE có
MA=MC
\(\widehat{AMH}=\widehat{CME}\)(hai góc đối đỉnh)
MH=ME
Do đó: ΔMAH=ΔMCE
=>AH=CE
Cho tam giác ABC có AB=AC, kẻ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia AC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD=CE
a,Cmr: tam giác AHC=tam giác AHC, BH=HC
b,Cho AH=BE.Cmr tam giác AHD=AHE, ABC=ACB. AH là tia phân giác của DAE
cho diện tích hình thang là 124,7 m vuông đáy lón là 15, đái bé là 14m, tính chiều cao
cho tam giác ABC cân tại A .Gọi H,K lần lượt là trung điểm của BC,AC
a) CM:ABHK là hình thang
b)trên tia đối của tia AH lấy điểm sao cho H là trung điểm AE.CM: ABEC là hình thoi
c) qua A vẽ dường vuông góc với AH cắt HK tại D.CM:ADHB là hình bình hành
d)CM:ADCH là hình chữ nhật
e)vẽ Hn là đường cao tam giác AHB,gọi I là trung điểm AN trên tia đối tia BH lấy M sao cho B là trung điểm MH . CM: MH vuông góc HI
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC )
a) cm tam giác AHB = tam giác AHC
b) giả sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c) trên tia đối của tia HA lấy điểm M sao cho HM = HA . Cm tam giác ABM cân
d) Cm BM song song AC
Cho tam giac ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC) a/Chứng minh: tam giác AHB=tam giác AHC b/Giả sử AB=AC=5cm,BC=8cm. Tính độ dài AH c/Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh: tam giác ABM cân d/Chứng minh BM// AC Cho mik cái hình
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
a. Xét hai tam giác vuông AHB và tam giác vuông AHC có
\(\widehat{AHB}=\widehat{AHC}=90^O\)
Cạnh AH chung
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác AHB = tam giác AHC [ cạnh huyền - cạnh góc vuông ]
b.Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)HB = HC =\(\frac{BC}{2}=\frac{8}{2}=4cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông AHB có
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(\Rightarrow AH^2=5^2-4^2\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=3cm\)
c.Xét hai tam giác vuông AHB và tam giác vuông MHB có
\(\widehat{AHB}=\widehat{MHB}=90^O\)
Cạnh HB chung
HA = HM [ gt ]
Do đó ; tam giác AHB = tam giác MHB [ cạnh góc vuông - cạnh góc vuông ]
\(\Rightarrow\)AB = MB [ cạnh tương ứng ]
Vậy tam giác ABM là tam giác cân tại B
d.Vì tam giác ABM cân tại B nên góc BAM = góc BAM [ 1 ]
Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)góc HAB = góc HAC hay góc MAB = góc MAC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ; góc BMA = góc CAM [ ở vị trí so le trong ]
Vậy BM // AC
Học tốt
cho tam giác ABC vuông cân tại A. vẽ AH vuông với BC tại H. a) chứng minh góc AHC=góc AHB b) Kẻ HM vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm N sao cho HM=HN c) Chúng minh BN//AC d) Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có
AB=AC
AH chung
Do đó: ΔAHC=ΔAHB
Suy ra: \(\widehat{AHC}=\widehat{AHB}\)
b: Xét tứ giác BNCM có
H là trung điểm của BC
H là trung điểm của NM
Do đó: BNCM là hình bình hành
Suy ra: BN//CM
hay BN//AC
Cho tam giác ABC vuông tại A ,có AB=AC .Gọi H là trung điểm của BC
a,Cm:tam giác AHB =tam giác AHC
b, Cm:góc BAH=góc ACH
c,Trên tia đối của tia AH lấy điểm E sao cho AE=BC ,trên tia đối của tia CA lấy điểm F sao cho CF=AB .CM:BE=BF ;BE VUÔNG GÓC VÓI BF
a: Xét ΔAHB và ΔAHC co
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH