Chứng minh rằng các biểu thức sau đều là số chính phương: A=11....1-22....2
Chứng minh các biểu thức sau là số chính phương:
a) A= \(\frac{11.....1}{2nso1}-\frac{222....22}{nso2}\)
b) B= \(\frac{11....1}{2nso1}+\frac{44...4}{nso4}+1\)
Chúng minh biểu thức A là số chính phương A= 11...1 - 22..2 ( 11...1 có 2n; 22...2 có n)
Đặt 111....1 ( có n số 1) = a (a thuộc N sao) thì
222....2 (có n số 2) = 2a
100....0(có n số 0) = 9a+1
Khi đó A= 111...1(n số 1). 100...0(n số 0) +111...1(n số 1) - 2a
= a.(9a+1) +a - 2a = 9a^2 + a +a -2a = 9a^2 =(3a)^2 chính phương
=> ĐPCM
Chứng minh rằng các biểu thức sau là số chính phương
A=11...1-22...2 (2n số 1 ; n số 2)
B=11...1+44...4+1 (2n số 1 ; n số 4 )
Đặt \(a=11...1\) (n chữ số 1) thì \(9a=99...9\) (n chữ số 9)\(\Rightarrow10^n=9a+1\)
Ta có:\(A=\) \(11...1-22...2\) (2n chữ số 1;n chữ số 2)
\(\Rightarrow A=11...111...1-22...2\) (2n chữ số 1;n chữ số 2)
\(\Rightarrow A=10^na+a-2a=10^n-a=a\left(10^n-1\right)\)\(=9a^2=\left(3a\right)^2=\left(33...3\right)^2\) (n chữ số 3)
b, tương tự câu a, đặt \(a=11...1\) (n chữ số 1) thì \(10^n=9a+1\)
\(B=11...1+44...4+1\) (2n chữ số 1; n chữ số 4)
\(\Rightarrow B=10^na+a+4a+1=10^n+5a+1\)\(=a\left(9a+6\right)+1=9a^2+6a+1=\left(3a+1\right)^2\)\(=\left(33...34\right)^2\) (n - 1 chữ số 3)
Chứng minh rằng các số sau là số chính phương:
a)A= 11...155..56 (n số 1; n - 1 số 5)
b)B= 44...4 + 22...2 + 88...8 + 7 (2n số 4; n+1 số 2; n số 8)
Gợi ý: 99...9(n số 9) = 10n - 1
a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)
\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)
\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)
\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)
\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)
\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.
Câu b áp dụng kĩ thuật tương tự nhé bạn.
Chứng minh rằng biểu thức sau là số chính phương:
B=\(\frac{11...1}{n}\)\(\frac{222...2}{n+1}\)5
a , Chứng minh rằng các số chính phương không có chữ số tận cùng là 2 , 3 , 7, 8
b , các số sau có phải là số chính phương không :
126 ^2 + 1 ; 1001^ 2 -3 ; 11 + 11^ 2 + 11^3 ; 10^10 + 7 ; 51 ^51 +1
127^2; 999^2; 33^4;17^10;52^51
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
chứng minh A=11...11 - 22...22 (có 2n chữ số 1 và n chữ số 2) là một số chính phương
chứng minh rằng biểu thức sau là số chính phương A = n(n+2)(n+4)(n+6) + 16
Ta có:
\(A=n\left(n+2\right)\left(n+4\right)\left(n+6\right)+16\)
\(=\left[n\left(n+6\right)\right]\left[\left(n+2\right)\left(n+4\right)\right]+16\)
\(=\left[n^2+6n\right]\left[n\left(n+4\right)+2\left(n+4\right)\right]+16\)
\(=\left[n^2+6n\right]\left[n^2+4n+2n+8\right]+16\)
\(=\left[n^2+6n\right]\left[n^2+6n+8\right]+16\)
Đặt \(n^2+6n=t\). Biểu thức A bằng:
\(t\left[t+8\right]+16\)
\(=t^2+8t+16\)
\(=\left(t^2+4t\right)+\left(4t+16\right)\)
\(=t\left(t+4\right)+4\left(t+4\right)\)
\(=\left(t+4\right)\left(t+4\right)\)
\(=\left(t+4\right)^2\) là số chính phương.
chứng minh rằng với mọi số tự nhiên a thì biểu thức sau là số chính phương