Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maéstrozs
Xem chi tiết
thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 13:54

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

Ngọc
Xem chi tiết
Giang Vũ
Xem chi tiết
anhmiing
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2017 lúc 6:05

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

ngân diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2023 lúc 15:28

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{3^2+3^2-BC^2}{2\cdot3\cdot3}=-\dfrac{1}{2}\)

=>18-BC^2=-9

=>BC^2=27

=>\(BC=3\sqrt{3}\left(cm\right)\)

\(\dfrac{BC}{sinA}=2R\)

=>\(2\cdot R=3\sqrt{3}:sin120=3\sqrt{3}:\dfrac{1}{2}=6\sqrt{3}\)

=>\(R=3\sqrt{3}\)

Trần Thị Hoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2017 lúc 11:51

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra: