tim 3 so nguyen to a,b,c sao cho abc nho hon ab+bc+ca
tim tat ca cac bo 3 so nguyen to a,b,c
sao cho abc<ab+bc+ca
cho a,b,c la cac so nguyen thoa man a+b+c+ab+bc+ca=6. chung minh rang a^2+b^2+c^2 khong nho hon 3
tim tat ca cac so nguyen to a,b,c co the bang nhau thoa man abc<ab+bc+ca chung minh rang neu b la so nguyen to >3 thi (b+1)(b-1) chia het cho 24
hay tim tat ca so nguyen duong a,b,c doi mot nguyen to cung nhau sao cho a<b<c va a+b+c+ab+bc+ac chia het cho abc
lam duoc minh se tang tick
tim tat ca cac bo so nguyen to a,b,csao cho abc<ab+bc+ca
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow ab+bc+ca\le ab+ab+ab=3ab\)
\(\Rightarrow abc< 3ab\Rightarrow c< 3\Rightarrow c=2\)
\(\Rightarrow2ab< ab+2\left(a+b\right)\Rightarrow ab< 2\left(a+b\right)\)
\(\Rightarrow ab-2b-2b+4< 4\Rightarrow\left(a-2\right)\left(b-2\right)< 4\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)=\left\{1;2;3\right\}\)
- Với \(\left(a-2\right)\left(b-2\right)=1\Rightarrow a=b=3\)
- Với \(\left(a-2\right)\left(b-2\right)=2\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=3;b=4\end{matrix}\right.\) (loại)
- Với \(\left(a-2\right)\left(b-2\right)=3\Rightarrow\left[{}\begin{matrix}a=5;b=3\\a=3;b=5\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị của chúng
Tim ba so nguyen to a,b,c khac nhau sao cho abc<ab+bc+ac
a, tim cac so nguyen n biet -3 nho hon hoac bang n va nho hon 5.
b, tinh tong cac so nguyen tim duoc o cau a.
a, - 3 \(\le\) n < 5
n \(\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
b, Tổng :
- 3 + ( - 2 ) + ( - 1 ) + 0 + 1 + 2 + 3 + 4
= [ ( - 3 ) + 3 ] + [ ( - 2 ) + 21 ] + [ ( - 1 ) + 1 ] + 0 + 4
= 0 + 0 + 0 + 0 + 4 = 4
thankiu ban nha!!
cho a+b = b +c = e + g voi a, b ,c ,d , e ,g la cac so nguyen to nho hon 20 tim a + b
Tim so nguyen to a de 4a cong 11 la so nguyen to nho hon 30