1+1+1+1+1+1+1+1+1+1+2+3+4
so sánh
a)A=1/2^1+1/2^2+1/2^3+...+1/2^49+1/2^50 với 1
b)B=1/3^1 +1/3^2+1/3^3...+1/3^99+1/3^100 với 1/2
c)C=1/4^1+1/4^2+1/4^3+...+1/4^999+1/4^1000 với 1/3
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}
Bạn Detective_conan giải đúng đấy!
1. (1+1/2).(1+1/2^2).(1+1/2^3)....(1+1/2^100) < 3
2. 1/(5+1)+2/(5^2+1)+4/(5^4+1)+...+ 1024/(5^1024+1) <1/4
3. 3/(1!+2!+3!)+4/(2!+3!+4!)+...+100/(98!+99!+100!) <1/2
??????????????????????????????????????????????
Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!
1.\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
Thấy:\(\frac{1}{2^{100}}>0\Rightarrow1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow A< 1\)
Ta có:\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)=A+100< 1+100=101\)
\(101>\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)\ge100\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(\frac{1}{2^{100}}\right)>\left(\frac{101}{100}\right)^{100}>3\)
*Cách khác:
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
\(=\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Ta thấy:
\(\frac{2+1}{2}>\frac{2^2+1}{2^2}>....>\frac{2^{100}+1}{2^{100}}\)
\(\Rightarrow\frac{2+1}{2}>\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Mà \(\frac{2+1}{2}< 3\)
\(\Rightarrow\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}< 3\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)< 3\)
c) 6 1/7 + 1/7 + 1/7 + 7 1/7 d) 12 1/3 : 1/4 + 3 2/3 : 1/4 e) (1 + 1/2 ) × (1 + 1/3 ) × (1 + 1/4 ) × … × (1 + 1/2020 ) f) 1 1/2 × 1 1/3 × 1 1/4 × 1 1/5 × … × 1 1/2021
B1
a (1/2+1).(1/3+1).(1/4+1)...(1/99+1)
b (1/2-1).(1/3-1).(1/4-1)...(1/100-1)
c 3/2^2.8/3^3.15/4^4...899/30^2
d(1-1/2).(1-1/3).(1-1/4)...1-1/1999).(1-1/200)
Tính:
A=(1-1/1+2).(1-1/1+2+3).(1-1/1+2+3+4)...(1-1/1+2+3+4+...+2022)
B=1+1/2(1+2)+1/3(1+2+3)+1/100(1+2+3+...+100)
Tính nhẩm :
1 × 2 = .... 1 × 3 = ....
2 × 1 = .... 3 × 1 = ....
2 : 1 = .... 3 : 1 = ....
1 × 4 = .... 1 × 5 = .....
4 × 1 = .... 5 × 1 = ....
4 : 1 = ..... 5 : 1 = .....
1 × 1 = ..... 1 : 1 = .....
Phương pháp giải:
Khi nhân hoặc chia một số với 1 thì giá trị số đó không thay đổi.
Lời giải chi tiết:
1 × 2 = 2 1 × 3 = 3
2 × 1 = 2 3 × 1 = 3
2 : 1 = 2 3 : 1 = 3
1 × 4 = 4 1 × 5 = 5
4 × 1 = 4 5 × 1 = 5
4 : 1 = 4 5 : 1 = 5
1 × 1 = 1 1 : 1 = 1
P=1/1+2+1/1+2+3+1/1+2+3+4+1/1+2+3+4+...+1/1+2+3+4+...+2018
Ai gait hộ mình với . Mai mình phải nộp bài r.huhuhu
Tính tổng sau: a) 1/2+1/6+1/12+1/20+1/30 b) 1/15+1/35+1/63+1/99+1/143 c) 1/6+1/12+1/20+1/30+1/42+1/56 d) 1/2+1/2^2+1/2^3+1/2^4+1/2^5 e) 1/7+1/7^2+1/7^3+...+1/7^100 f) 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/200*(1+2+3+..+200) g) (1/2+1)*(1/3+1)*(1/4+1)*..*(1/100+1) h) (1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/2022) Giúp mk vs ạkkk
a) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{6}\)=\(\dfrac{5}{6}\)
b) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
=\(\dfrac{1.2}{3.5.2}+\dfrac{1.2}{5.7.2}+\dfrac{1.2}{7.9.2}+\dfrac{1.2}{9.11.2}+\dfrac{1.2}{11.13.2}\)
=\(\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\right)\).
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
=\(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)=\(\dfrac{1}{2}.\dfrac{10}{39}\)=\(\dfrac{5}{39}\).
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
=\(1-\dfrac{1}{8}=\dfrac{7}{8}\).
d) \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4}{2^5}+\dfrac{2^3}{2^5}+\dfrac{2^2}{2^5}+\dfrac{2}{2^5}+\dfrac{1}{2^5}\)
=\(\dfrac{2^4+2^3+2^2+2+1}{2^5}\)=\(\dfrac{2^5-1}{2^5}=\dfrac{31}{32}\).
e) \(\dfrac{1}{7}+\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}=\dfrac{7^{99}+7^{98}+7^{97}+...+7+1}{7^{100}}=\dfrac{\dfrac{7^{100}-1}{6}}{7^{100}}=\dfrac{7^{100}-1}{6.7^{100}}\)
Chứng minh rằng 1/1*2+1/1*2*3+1/1*2*3*4+...+1/1*2*3*4*...*101 < 1
(1/2!+1/3!+1/4!+...+1/101!)
tìm x , biết
1 . 3 3/4 : x = 1 1/2
2 . 1 1/4 x + 2 1/2 = 1 1/4
3 . ( 3 1/3 - 1 1/2 x ) : 5/6 = 1 1/2
4 . ( 3/7 x - 1 ) : 4 = -1/28
5 . 2 2/3 x - x = 3 3/4
6 . | x - 3/4 | = 1
7 . | 2/3 x + 1/3 | = 5/6
a) 3 3/4 . x = 1 1/2
<=> 15/4 . x = 3/2
<=> x = 3/4 . 4/15
<=> x = 1/5
Vậy x = 1/5
b) 1 1/4 x + 1 1/2 = 1 1/4
<=> 5/4 . x + 3/2 = 5/4
<=> 5/4 . x = 5/4 - 3/2
<=> 5/4 . x = -1/4
<=> x = -1/4 . 4/5
<=> x = -1/5
Vậy x = -1/5
c) ( 3 1/3 - 1 1/2 x ) : 5/6 = 1 1/2
<=> ( 10/3 - 3/2 x ) : 5/6 = 3/2
<=> 10/3 - 3/2 x = 3/2 . 5/6
<=> 10/3 - 3/2 x = 5/4
<=> 3/2 . x = 10/3 - 5/4
<=> 3/2 . x = 25/12
<=> x = 25/12 . 2/3
<=> x = 25/18
Vậy x = 25/18
d) ( 3/7 x - 1 ) : 4 = -1/28
<=> 3/7 . x - 1 = -1/28 . 1/4
<=> 3/7 . x - 1 = -1/112
<=> 3/7 . x = -1/112 + 1
<=> 3/7 . x = 111/112
<=> x = 111/112 . 7/3
<=> x = 37/16
Vậy x = 37/16
e) | x - 3/4 | = 1
<=> x - 3/4 = 1
hoặc x - 3/4 = -1
<=> x = 1 + 3/4
hoặc x = -1 + 3/4
<=> x = 7/4
hoặc x = -1/4
Vậy x = 7/4 ; x = -1/4
f) | 2/3 . x + 1/3 | = 5/6
<=> 2/3 . x + 1/3 = 5/6
hoặc 2/3 . x + 1/3 = -5/6
<=> 2/3 . x = 5/6 - 1/3
hoặc 2/3 . x = -5/6 - 1/3
<=> 2/3 . x = 1/2
hoặc 2/3 . x = -7/6
<=> x = 1/2 . 3/2
hoặc x = -7/6 . 3/2
<=> x = 3/4
hoặc x = -7/4
Vậy x = 3/4 ; x = -7/4