chờ a,b,c dương và a+b+c=1 chứng minh (a+1/a)^2 + (b+1/b)^2 + (c+1/c)^2 > 33
Chờ (a,b)=1 và ab=c^2 (c là số nguyên dương).Chứng minh rằng a;b là số chính phương.
chứng minh rằng nếu a,b,c là các số dương và a+b+c=1 thì
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2>33\)
Từ \(1=a+b+c\Rightarrow1=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(bất đẳng thức bunhiacopxki)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)(*)
Ta có : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)(1)
Dễ thấy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{b}{b}+\frac{c}{a}+\frac{a}{c}\)
\(\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{c}{b}\frac{b}{c}}+2\sqrt{\frac{a}{c}\frac{c}{a}}=3+2+2+2=9\)(bất đẳng thức cô si)
\(Hay:\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\left(do:a+b+c=1\right)\)(2)
Từ (1) và (2) suy ra \(9^2\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge27\)(**)
Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}+c^2+2+\frac{1}{c^2}\)
\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)
\(\ge\frac{1}{3}+27+6=33+\frac{1}{3}>33\)(theo (*) và (**) )
Chứng minh rằng nếu a, b, c là các số dương và a + b + c = 1 thì \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2>33\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel. ta có:
\(VT\ge\frac{\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\)
\(\ge\frac{\left(a+b+c+\frac{9}{a+b+c}\right)^2}{3}=\frac{10^2}{3}>33\) (đpcm)
P/s: đúng ko ta?:3
1.Chứng minh rằng a^2 + 5 > 4a
3( a^2 + b^2 + c^2) >= ( a+ b + c)^2
2. Cho a,b,c dương và a+b+c =3. Chứng minh rằng
1/a + 1/b + 1/c >= 3
1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)2 + 1 > 0
\(\Rightarrow\)Đpcm
b)Xét 3(a2 + b2 + c2) -(a + b +c)2 =3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2ac - 2bc
=2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
=(a - b)2 + (a - c)2 + (b - c)2\(\ge\)0 (với mọi a,b,c)
\(\Rightarrow\)Đpcm
2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
áp dụng cô-sy
\(\Rightarrow\)A\(\ge\)9
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
Choa,b,c dương và a+b+c=1. Chứng minh 1/(a^2+b^2+c^2)+1/abc >= 30
TRẢ LỜI:
Áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 30
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 30
mk ko bt sorry
ai như vậy thì k mk nha
Có \(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow\frac{1}{27}\ge abc\Leftrightarrow abc\le\frac{1}{27}\)
Có \(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}\ge\frac{1+1}{3\sqrt[3]{a^3b^3c^3}}=\frac{2}{3.abc}\ge\frac{2}{3.\frac{1}{27}}=\frac{2}{\frac{1}{9}}=18\)
chứng minh rằng a^2/(a+b) + b^2/(a+c) + c^2/(b+a) >= 1/2 với a, b , c là các số thực dương và a + b+c=1
dùng bất đẳng thức svac xơ là ra ngay luôn
Chứng minh rằng nếu a,b,c là các số dương và a + b + c = 1 thì:
(a +\(\frac{1}{a}\))2 + (b + \(\frac{1}{b}\))2 + (c + \(\frac{1}{c}\))2 > 33
\(P=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{1}{3}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(P\ge\frac{1}{3}\left(a+b+c+\frac{9}{a+b+c}\right)^2=\frac{1}{3}.10^2=\frac{100}{3}>33\)
cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d
cho các số dương a,b,c và a+b+c=3 . Chứng minh rằng \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}>3\)