\(3\frac{6}{8}+4\frac{2}{4}\)
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
Tính nhanh: \(\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\frac{6}{4!+5!+6!}+\frac{7}{5!+6!+7!}+\frac{8}{6!+7!+8!}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(\frac{-5}{6}\right)-\frac{6}{7}-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}-\left(-\frac{5}{6}\right)-\frac{-7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}+\frac{7}{8}+\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{7}{8}+\frac{6}{7}\)
\(=\frac{7}{8}+\frac{6}{7}=\frac{49}{56}+\frac{48}{56}=\frac{49+48}{56}=\frac{97}{56}\)
A)\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=4^x\)
B)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
Bai 3\(\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+.....+\frac{1}{2+4+6+8+.....+2\cdot x}=\frac{503}{1007}\)
\(S=\frac{1}{2}:\frac{3}{2}:\frac{4}{3}:\frac{5}{4}:\frac{6}{5}:\frac{7}{6}:\frac{8}{7}:\frac{9}{8}:\frac{10}{9}\)
\(S=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.\frac{9}{10}\)
\(S=\frac{1}{10}\)
học tốt
S=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{9}{10}\)
S=\(\frac{1.2.3....9}{2.3.4...10}=\frac{1}{10}\)
Vậy S=\(\frac{1}{10}\)
\(S=\frac{1}{2}:\frac{3}{2}:\frac{4}{3}:\frac{5}{4}:\frac{6}{5}:\frac{7}{6}:\frac{8}{7}:\frac{9}{8}:\frac{10}{9}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.\frac{9}{10}\)
\(=\frac{1.2.3.4.5.6.7.8.9}{2.3.4.5.6.7.8.9.10}\)
\(=\frac{1}{10}\)
\(\frac{8}{1}+\frac{7}{2}+\frac{6}{3}+\frac{5}{4}+\frac{4}{5}+\frac{3}{6}+\frac{2}{7}+\frac{1}{8}\)
Tính hợp lý
\(\frac{\frac{5}{3}+\frac{5}{8}-\frac{5}{7}}{\frac{-4}{3}-\frac{-4}{8}+\frac{4}{7}}:\frac{\frac{2}{3}-\frac{1}{6}+\frac{6}{7}}{\frac{-1}{3}+\frac{1}{6}-\frac{1}{7}}\)
\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)
MÃu thứ hai sao ý
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)