chứng minh \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}<\frac{1}{2}\)
\(S1=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}<\frac{1}{2}\)
Chứng minh:
c.\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b.\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
a.\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\)
chứng minh
\(\frac{1}{5}+\frac{1}{16}+\frac{1}{25}+\frac{1}{41}+\frac{1}{60}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)\(\frac{1}{2}\)
Ta có:
\(\hept{\begin{cases}\frac{1}{5}=\frac{1}{5}\\\frac{1}{16}< \frac{1}{5}\\\frac{1}{113}< \frac{1}{5}\end{cases}}...\)\(\Rightarrow\frac{1}{5}+\frac{1}{16}+\frac{1}{25}+\frac{1}{41}+\frac{1}{60}+\frac{1}{85}+\frac{1}{113}< \frac{1}{5}.7=\frac{7}{5}< \frac{10}{5}=2\)(ĐPCM)
Chứng tỏ :
\(\frac{1}{5}+\frac{1}{16}+\frac{1}{25}+\frac{1}{41}+\frac{1}{60}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
1. so sánh
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+với1\)
B=\(1-\left(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\right)với\frac{1}{2}\)
C=\(1-\left(\frac{1}{5}+\frac{1}{11}+\frac{1}{10}+\frac{1}{9}+\frac{1}{59}+\frac{1}{58}+\frac{1}{57}\right)với\frac{1}{2}\)
Cho P=\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}\)
Chứng minh rằng P<1/2
So sánh:\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\) với \(\frac{1}{2}\)
chứng minh rằng:
A=\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{2}\)
Chứng minh rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+...+\frac{1}{100^2+101^2}<\frac{1}{2}\)