Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E theo thứ tự là trung điểm của BH, AH. Chứng minh : CE vuông góc AD
Tam giác abc vuông tại A, đường cao AH. Gọi d,e theo thứ tự là trung điểm của BH,AH. Chứng minh rằng CE vuông góc với AD. Giúp với!
Cho tam gíac ABC vuông tại A,đường cao AH.Gọi D,E theo thứ tự là trung điểm của BH,AH .Chứng minh rằng CE vuông góc với AD
DE là đường trung bình trong tam giác AHB nên DE // AB nên DE vuông góc AC
trong tam giác ADC có 2 đường cao ah de nên E là trực tâm nên CE vuông góc với AD
cho tam gíac ABC vuoomg tại A,đường cao AH.Gọi D,E theo thứ tự là trung điểm của BH,AH .Chứng minh rằng CE vuông góc với AD
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Cho tam giác ABC có góc A=90 độ , đường cao AH. Gọi D, E theo thứ tự là trung điểm của HB và AH.
Chứng minh rằng : CE vuông góc với AD
ảo à
đéo chứng minh được nhé
tự vẽ hình kiểm chứng đi
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
1. Cho tam giác ABC, AB<AC. Trung tuyến AM, phân giác AD. Một đường thẳng đi qua M và song song với AD cắt AB,AC thứ tự tại E,F. Chứng minh BE=CF.
Hướng dẫn: Qua C kẻ đường thẳng song song với EM cắt tia BE tại K. Chứng minh BE=KE, KE = CF.
2. Cho tam giác ABC vuông tại A,đường cao AH. Gọi D,E thứ tự là trung điểm của BH,AH. Chứng minh CE vuông góc với AD
Hướng dẫn: Sử dụng tính chất trực tâm tam giác cho tam giác ADC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ H đến AB và AC. Chứng minh AH=DE. Gọi I, K theo thứ tự là trung điểm của HB và HC. chứng minh tứ giác IDKE là hình thang vuông. Tính độ dài đường trung bình của hình thang DIKE biết : AB=6cm, AC=8cm.
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
Cho tam giác ABC cân tại A, đường cao AH. Gọi P, E lần lượt là trung điểm của BH, AH. Chứng minh CE vuông góc AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC.
a. Chứng minh rằng AH = DE
b. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK
Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH
⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)
⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0 - 2. ∠ B (1)
Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.
⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .
⇒ ∆ KHE cân tại K ⇒ ∠ (EKH) = 180 0 - 2. ∠ (KHE) (2)
Tứ giác ADHE là hình chữ nhật nên:
HE // AD hay HE // AB ⇒ ∠ B = ∠ (KHE) (đồng vị)
Từ (1), (2) và (3) suy ra: ∠ (DIB) = ∠ (EKH)
Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).