Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiện Nhân Nguyễn

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kể từ H đến AB, AC.

a. Chứng minh rằng AH = DE

b. Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI // EK

Thuy Bui
18 tháng 11 2021 lúc 20:52

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

 

Tam giác BDH vuông tại D có DI là đường trung tuyến thuộc cạnh huyền BH

⇒ DI = IB = 1/2 BH (tính chất tam giác vuông)

⇒ ∆ IDB cân tại I ⇒ ∠ (DIB) = 180 0  - 2. ∠ B (1)

Tam giác HEC vuông tại E có EK là đường trung tuyến thuộc cạnh huyền HC.

⇒ EK = KH = 1/2 HC (tính chất tam giác vuông) .

⇒  ∆ KHE cân tại K ⇒  ∠ (EKH) =  180 0 - 2. ∠ (KHE) (2)

Tứ giác ADHE là hình chữ nhật nên:

HE // AD hay HE // AB ⇒  ∠ B =  ∠ (KHE) (đồng vị)

Từ (1), (2) và (3) suy ra:  ∠ (DIB) =  ∠ (EKH)

Vậy DI // EK (vì có cặp góc đồng vị bằng nhau).


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
giang đào phương
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Minh tú Trần
Xem chi tiết
khang
Xem chi tiết
Crazy 2002
Xem chi tiết
Nguyễn Khánh
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Hatake Kakashi
Xem chi tiết