cho H= 7/3+13/3^2+19/3^3+...+601/ 3^100. chứng minh h<5
Cho H = \(\dfrac{7}{3}+\dfrac{13}{3^2}+\dfrac{19}{3^3}+...+\dfrac{601}{3^{100}}\).Chứng minh : \(3\dfrac{7}{9}< H< 5\)
Cho \(H=\frac{7}{3}+\frac{13}{3^2}+\frac{19}{3^3}+...+\frac{601}{3^{100}}.\)
Chứng minh:\(3\frac{7}{9}
Cho H = 7/3 + 13/32 + 19/33 + . . . + 601/3100.
CMR: 3\(\frac{7}{9}\)< H <5
\(H=\frac{7}{3}+\frac{13}{3^2^{ }}+\frac{23}{3^3}+...+\frac{601}{3^{100}}\text{
chứng minh }3\frac{7}{9}<H<5
H=\(\frac{7}{3}\)+\(\frac{13}{3^2}\)+...+\(\frac{601}{3^{100}}\)
chứng minh\(3\frac{7}{9}\) <H<5
Tính \(A=\frac{7}{3}+\frac{13}{3^2}+\frac{19}{3^3}+...+\frac{601}{3^{100}}\)
Giúp tôi với mọi người ơi:
Cho C=1/2x3/4x5/6x......x2017/2018
CMR:C^2<1/2019
Bài típ nè:
Cho D=1/2x3/4x.......x99/100
CMR:1/15<D<1/10
Nữa nè:
Cho H=7/3+13/3^2+19/3^3+......+601/3^100
CMR:34/9<H<5
Nhớ giải rõ ràng nha! Thanks mọi người!
Cho H = \(\frac{7}{3}+\frac{13}{3^2}+\frac{19}{3^3}+.....+\frac{605}{3^{100}}\)
CMR \(3\frac{7}{9}< H< 5\)
Ta có \(H=\frac{7}{3}+\frac{13}{3^2}+...+\frac{605}{3^{100}}\)
\(\Leftrightarrow3H=7+\frac{13}{3}+...+\frac{605}{3^{99}}\)
\(\Rightarrow2H=7+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2H=7+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)
Mà \(6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)=3-\frac{1}{3^{99}}\)
\(\Rightarrow2H=7+3-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
\(\Leftrightarrow2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Vì\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)
\(\Rightarrow2H< 10\)
\(\Leftrightarrow H< 5\left(1\right)\)
Ta có \(2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Mà\(\frac{1}{3^{97}}+\frac{605}{3^{98}}< 22\)
hay\(\frac{1}{3^{99}}+\frac{605}{3^{98}}< \frac{22}{9}\)
\(\Rightarrow2H>10-\frac{22}{9}=\frac{68}{9}=2\cdot\left(3+\frac{7}{9}\right)\)
\(\Rightarrow H>3+\frac{7}{9}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)
cho C = 3^1+3^2+3^3+...+3^100. chứng minh C chia hét cho 4; cho 10 ; cho 40 nhưng không chia hết cho 13.
* ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\) có \(100\) số hạng
và \(100⋮4\) và \(100⋮̸3\)
ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮4\) )
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+2^{97}\left(1+3+3^2+3^3\right)\)
\(=3\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+2^{97}\left(1+3+9+27\right)\)
\(=3.40+3^5.40+...+3^{97}.40=40.\left(3+3^5+...+3^{97}\right)⋮40;10;4\)
vậy \(C\) chia hết cho \(40;10và4\) (1)
ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)
\(=3^1+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮̸3\) )
\(=3+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+2^{98}\left(1+3+3^2\right)\)
\(=3+3^2\left(1+3+9\right)+3^5\left(1+3+9\right)+...+2^{98}\left(1+3+9\right)\)
\(=3+3^2.13+3^5.13+...+3^{98}.13=3+13.\left(3^2+3^5+...+3^{98}\right)\)
ta có : \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\) nhưng \(3⋮̸13\)
\(\Rightarrow\) \(C\) không chia hết cho \(13\) và \(3< 13\) \(\Rightarrow\) \(3\) là số dư khi chia \(C\) cho \(13\) (2)
từ (1) và (2) \(\Rightarrow\) (ĐPCM)