Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Linh Hoàng
Xem chi tiết
Uyên  Thy
13 tháng 3 2022 lúc 7:47

Lỗi ảnh r 

✎﹏ϯǜทɠ✯廴ěë︵☆
13 tháng 3 2022 lúc 7:48

???????????????????????????????????????

Ngọc Linh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 21:28

 

Gọi chiều rộng, chiều dài lần lượt là a,b

Theo đề, ta có hệ phương trình:

a=1/4b và a(b+3)=ab+108

=>a=1/4b và 3a=108

=>a=36 và b=144

Ngọc Linh Hoàng
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 0:29

Gọi độ dài quãng đường là x

Thời gian đi là x/120(h)

Thời gian về là x/90(h)

Theo đề, ta có phương trình:

x/90-x/120=2,5

hay x=900

Ngọc Linh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 0:22

Gọi độ dài quãng đường là x

Thời gian đi là x/120(h)

Thời gian về là x/90(h)

Theo đề, ta có phương trình:

x/90-x/120=2,5

hay x=900

Ngọc Linh Hoàng
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết
lê hồng phương Chi
Xem chi tiết
Bùi Xuân Doanh
3 tháng 2 2023 lúc 20:58

\(\dfrac{5}{7}=\dfrac{30}{42};\dfrac{6}{7}=\dfrac{36}{42}. Vay5phansocantimla:\dfrac{31}{42};\dfrac{32}{42};\dfrac{33}{42};\dfrac{34}{42};\dfrac{35}{42}\)

Đoàn Trần Quỳnh Hương
3 tháng 2 2023 lúc 21:00

Qui đồng 2 phân số lên ta có: 

5/7 = 30/42 và 6/7 = 36/42 

Vậy phân số nằm giữa là: 31/42 ; 32/42; 33/42; 34/42; 35/42

Ngọc Linh Hoàng
Xem chi tiết
Nguyễn Ngọc Huy Toàn
6 tháng 3 2022 lúc 8:11

a.Áp dụng định lý pitago vào tam giác vuông PKQ, ta có:

\(QK^2=PQ^2+PK^2\)

\(\Rightarrow QK=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

Áp dụng t/c đường phân giác góc P, ta có:

\(\dfrac{PQ}{PK}=\dfrac{AP}{AK}\)

\(\Leftrightarrow\dfrac{6}{8}=\dfrac{AP}{AK}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{AP}{AK}\) \(\Leftrightarrow\dfrac{AK}{4}=\dfrac{AP}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{AK}{4}=\dfrac{AP}{3}=\dfrac{AK+AP}{4+3}=\dfrac{QK}{7}=\dfrac{10}{7}\)

\(\Rightarrow AK=\dfrac{10}{7}.4=\dfrac{40}{7}cm\)

\(\Rightarrow AP=\dfrac{10}{7}.3=\dfrac{30}{7}cm\)

b. Xét tam giác PBQ và tam giác PQK, có:

\(\widehat{PBQ}=\widehat{QPK}=90^0\)

\(\widehat{Q}:chung\)

Vậy tam giác PBQ đồng dạng tam giác PQK ( g.g )

\(\Rightarrow\dfrac{PB}{PK}=\dfrac{PQ}{QK}\)

\(\Leftrightarrow\dfrac{PB}{8}=\dfrac{6}{10}\) \(\Leftrightarrow\dfrac{PB}{8}=\dfrac{3}{5}\)

\(\Leftrightarrow5PB=24\) \(\Leftrightarrow PB=\dfrac{24}{5}cm\)

c. Xét tam giác PBQ và tam giác PBK, có:

\(\widehat{PBQ}=\widehat{PBK}=90^0\)

\(\widehat{PQB}=\widehat{BPK}\) ( cùng phụ với \(\widehat{A}\) )

Vậy tam giác PBQ đồng dạng tam giác PBK ( g.g )

\(\Rightarrow\dfrac{PB}{BK}=\dfrac{QB}{PB}\)

\(\Leftrightarrow PB^2=BK.QB\)