Cho tam giác ABC nhọn, đường cao BD và CE
a) Tính cos A theo 2 cách. Từ đó suy ra tam giác AED ~ tam giác ACB
b) Chứng minh: S ADE = S ABC x cos2 A
c) A = ? để S ADE = S BECD
Cho tam giác ABC nhọn, 2 đường cao BD và CE
a, C/m: góc AED=góc ACB
b, Nếu A=60 và S tam giác ABC=120cm2. Tính S tam giác ADE.
~NHỜ CÁC BẠN GIÚP MÌNH TÍ NHÉ!~
cho tam giáp nhọn abc vẽ dường cao bd và ce
a cm tam giác aec đồng dạng với tam giác adb từ dố suy ra ae.ab=ad.ac
b,cm góc ade=góc abc
c,giả sử góc a=60 độ diện tích tam giác abc=120cm mét vuông tính diện tích tam giác ade
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
Cho Tam giác ABC nhọn (AB<AC), có đường cao BD,CE, cắt nhau tại H
a) Chứng minh: Tam giác ADB đồng dạng Tam giác AEC và suy ra AE x AB = AD x AC
b) Chứng minh: Tam giác ADE đồng dạng Tam giác ABC và suy ra ADE = ABC
c) Vẽ tia Dx sao cho tia DB là phân giác góc EDx. Tia Dx cắt BC tại F. Chứng minh: ADE = CDF và A,H,F thẳng hàng
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
Cho tam giác nhọn ABC có góc A=60 độ . Kẻ các đường cao BD và CE, Biết S tam giác ABC=24,42017cm^2 , cạnh AB=6,52cm.
a) Tính AD và CE.
b) Tính S tam giác ADE.
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
Cho tam giác nhọn abc(ab<ac), hai đường cao BD,CE(E thuộc AB,D thuộc AC). a)chứng minh ∆ABD~∆ACE
b)chứng minh ∆ABC~∆ADE,từ đó suy ra AD.BC=AB.DE
c)gọi giao điểm của BD và CE là H.Chứng minh BH.BD+CH.CE=BC2
a, Xét ∆ ABD và ∆ ACE có:
góc ADB = góc AEC ( = 90°)
Góc A chung
=> ∆ABD ~ ∆ ACE (g- g)
b,
Cho tam giác nhọn ABC có góc A bằng 60 độ, các đường cao BD và CE. Chứng minh rằng: SADE=1/4SABC
\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)
\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)
Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)
1.Giải phương trình : 3x - 15 = 2x(x - 5)
2.Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 9cm, CH = 16cm.
a)CM: tam giác ABC đồng dạng với tam giác HAC
b)Tính AB
c)Tia pg góc B cắt AH và AC lần lượt tại I và K. CM: AI = AK
3.Cho tam giác nhọn ABC, hai đường cao BD, CE. Biết góc A = 60o SABC = 120cm2 . Tính SADE
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
Cho tam giác nhọn ABC ,hai đường BD ,CE
a,Chứng minh AE.AB=AD.AC
b,Tam giác ADE đồng dạng với tam giác ABC
c,Góc A = 60o ,SABC =120 .Tính SADE
giúp mình giải câu này với