Tìm tất cả các giá trị của x, y, z thoả măn đẳng thức: \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
tìm tất cả giá trị của x , y , z thỏa mãn đẳng thức : \(\sqrt{x-y-z}\)= \(\sqrt{x}\)- \(\sqrt{y}\)- \(\sqrt{z}\)
tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
tìm tất cả các giá trị x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Tìm tất cả các giá trị của x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Làm ơn giúp mình với!!!
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Điều kiện tự làm nhé
\(\Leftrightarrow x-y+z=x+y+z+2\left(\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\right)\)
\(\Leftrightarrow y+\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\z=y\end{cases}}\)
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Huhu
tui
moi
hoc
lop
5
chua
bit
lam
lop
9
kho
qua
hihi
HONG BIET LAM
?
?
?
?
?
?
?
?
?
?
??
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Tìm tất cả các giá trị x , y, z thỏa mãn đẳng thức :
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Bình phương 2 vế, ta đc:\(x-y+z=x+y+x-2\sqrt{xy}-2\sqrt{yz}+2\sqrt{zx}\Rightarrow y-\sqrt{xy}-\sqrt{yz}+\sqrt{zx}=0\Rightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)=0\)Tự lm nốt nha.
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\Leftrightarrow\left(\sqrt{x-y+z}\right)^2=\left(\sqrt{x}-\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow x-y+z=x+y+z-2\sqrt{xy}-2\sqrt{yz}+2\sqrt{xz}\Leftrightarrow2y-2\sqrt{xy}-2\sqrt{yz}+2\sqrt{xz}=0\Leftrightarrow y-\sqrt{xy}-\sqrt{yz}+\sqrt{xz}=0\Leftrightarrow\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{x}\right)=0\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{y}-\sqrt{x}=0\\\sqrt{y}-\sqrt{x}=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}\sqrt{y}=\sqrt{x}\\\sqrt{y}=\sqrt{z}\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}y=x\\y=z\end{matrix}\right.\)
Đáp án cuối cùng là mọi x,y,z\(\ge\)0 sao cho x=y hoặc y=z hoặc x=y=z (mình giải rồi nhưng nó bị lỗi ko cho bạn xem được)
Cho 3 số dương x, y, z thay đổi thoả mãn: \(\sqrt{\frac{xy}{z}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{yz}{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)
\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)
Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)
\(\Rightarrow9\ge3\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z\le3\)
Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)
Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Chúc bạn học tốt !!!
Tìm tất cả các giá trị của x,y,z sao cho \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)