Tính:1+1/2^2.1+1/3^2.1+1/3^...1+1/n
tính nhanh
1/2.1/2+1/2.1/3+1/3.1/4+1/4.1/5+1/5.1/6
Lời giải rõ ràng nha mọi người
\(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}\)\(+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(=\frac{1}{4}+\frac{1}{3}\)
\(=\frac{7}{12}\)
HINH NHU BAN VIET NHAM DAU BAI ROI
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1.1}{1.2}+\frac{1.1}{2.3}+\frac{1.1}{3.4}+\frac{1.1}{4.5}+\frac{1.1}{5.6}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
_Chúc bạn học tốt_
Tính :
a. 1/2 + 1/3 + 1/4
b. 5/2 - 1/3 + 1/4
c. 1/2.1/3 + 1/2.2/3
d. 3/2 - 1/3 + 2/5
`a, 1/2 +1/3 +1/4`
`= 6/12 + 4/12 + 3/12`
`= (6+4+3)/12`
`= 13/12`
`b,5/2 -1/3 +1/4`
`= 30/12 - 4/12 + 3/12`
`=(30-4+3)/12`
`= 29/12`
`c, 1/2 . 1/3 +1/2 . 2/3`
`= 1/2. (1/3+2/3)`
`= 1/2. 3/3`
`=1/2 .1`
`=1/2`
`d, 3/2 - 1/3 +2/5`
`= 45/30 - 10/30 + 12/30`
`=(45-10+12)/30`
`= 47/30`
a: 1/2+1/3+1/4
=12/24+8/24+6/24=26/24=13/12
b: 5/2-1/3+1/4
=30/12-4/12+3/12=29/12
c: =1/2(1/3+2/3)=1/2*3/3=1/2
d: =45/30-10/30+12/30
=47/30
tính hợp A=1/2+1/3-1/4:(1/2+1/3-1/4)-1/2.1/3.1/4
tính nhanh 1/1.1/2+1/2.1/3+1/3.1/4+........+1/9991000
1/1.2+1/2.3+1/3.4+1/4.5+.................+1/9990999.9991000
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.................+1/9990999-1/9991000
=1-1/9991000
=9990999/9991000
A=1/-2.1/3+1/-3.1/4+....+1/-9.10
tính A
\(A=-\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-...-\dfrac{1}{9.10}\)
\(\Rightarrow-A=\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+...+\dfrac{10-9}{9.10}=\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)
\(=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\Rightarrow A=-\dfrac{2}{5}\)
tính nhanh:1/1.1/2+1/2.1/3+1/3.1/4+....+1/9991000
tinh 1-1/2^2.1-1/3^2.....1-1/100^2
tính nhanh:
M= 1/2.1/3+1/-3.1/4+1/-4.1/5+1/-5.1/6
Tính : a) 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
b) ( 1+2+3+...+100) . ( 1/3 - 1/5 - 1/7 - 1/9 ) . ( 6,3 . 12 - 21 . 3,6) / 1/2+1/3+1/4+...+1/100
a) \(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào ta được :
\(\frac{1}{100.99}-\frac{98}{99}=\frac{1}{9900}-\frac{98}{99}=\frac{-9799}{9900}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-3,6.21\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Ta thấy biểu thức trong ngoặc thứ ba của tử số có kết quả bằng 0
\(\Rightarrow\)Phân số ấy có kết quả bằng 0