Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Quân
Xem chi tiết
tran mim hoang
Xem chi tiết
Trần Đức Thắng
20 tháng 7 2015 lúc 9:23

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

thay vào VT ta có:

        \(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b\left(t+1\right)}{b\left(t-1\right)}=\frac{t+1}{t-1}\left(1\right)\)

Thay vào VP ta có  :

         \(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d\left(t+1\right)}{d\left(t-1\right)}=\frac{t-1}{t-1}\left(2\right)\)

Từ(1) và (2) => VT = VP đẳng thức được chứng minh

Lê Anh Thư
20 tháng 7 2015 lúc 9:45

Ta có :\(\frac{a}{b}=\frac{c}{d}\left(=\right)\frac{a}{c}=\frac{b}{d}\)    

áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

            

\(\vec{\frac{a+b}{a-b}=\frac{c+d}{c-d}}\)      



 

Quyen Tran
Xem chi tiết
nguyencris
Xem chi tiết
I - Vy Nguyễn
22 tháng 2 2020 lúc 23:21

Ta có : \(b=\frac{a+c}{2}\) \(\implies\) \(2b=a+c\)

         \(\frac{2}{c}=\frac{1}{b}+\frac{1}{d}\) 

\(\implies\)  \(\frac{1}{2}.\frac{2}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\implies\)  \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)

\(\iff\)  \(\frac{1}{c}=\frac{b+d}{2db}\)

        \(2db=c.\left(b+d\right)\)

  \(\left(a+c\right)d=cd+cb\)

     \(ad+cd=cd+cb\)

                 \(ad=cb\)

                 \(\frac{a}{c}=\frac{b}{d}\) là một tỉ lệ thức \(\left(đpcm\right)\)

Khách vãng lai đã xóa
Dinh Thi Ngoc Huyen
Xem chi tiết
ST
17 tháng 10 2017 lúc 12:09

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)

Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)

Câu b tương tự

zZz Thuỷy Phạmm xXx
Xem chi tiết
Le Thi Khanh Huyen
22 tháng 8 2015 lúc 22:09

a.Ta có: \(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}=\frac{2a-c}{2b-d}\)

Đinh Văn Nguyên
Xem chi tiết
Hoàng Phúc
25 tháng 4 2016 lúc 20:28

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Theo TCDTSBN:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

Sahra Elizabel
25 tháng 4 2016 lúc 20:52

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4c}{4d}=\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)

k nhé!

nguyen minh hieu
Xem chi tiết
dinhkhachoang
10 tháng 2 2017 lúc 6:17

TA CÓ A/B=C/D

=A/C=B/D=A-C/B-D=A+C/B+D

=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA 

AA/B=C/D

Đinh Đức Hùng
10 tháng 2 2017 lúc 12:43

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng TC DTSBN ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

nguyen minh hieu
Xem chi tiết