Tính:
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
c) \(\frac{5^4.20^4}{25^5.4^5}\)
d) \(\left(\frac{-10}{3}\right)^5\) . \(\left(\frac{-6}{5}\right)^4\)
BN NÀO GIÚP MK, MK SẼ TICK.
Tính:
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
c) \(\frac{5^4.20^4}{25^5.4^5}\)
d) \(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
e) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
f) \(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3\)
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=-\frac{2560}{3}\)
e) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
f) \(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3=2:\left(-\frac{1}{6}\right)^3=2:-\frac{1}{216}=-432\)
so sánh :
C=\(\frac{5^4.20^4}{25^5.4^5}\) và D=\(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
E=\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)và F=\(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3\)
I=\(\frac{2}{3}+\frac{1}{3}:\left(\frac{-8}{25}\right)\)và H=\(\frac{5}{11}.\frac{4}{11}+\frac{7}{11}.\frac{5}{11}-\frac{2}{3}\)
Tính:
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
c) \(\frac{5^4.20^4}{25^5.4^5}\)
d) \(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
a, \(\frac{169}{196}\)
b, \(\frac{1}{144}\)
c, \(\frac{1}{100}\)
d, \(\frac{-2560}{3}\)
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
b) \(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
c) \(\frac{5^4.20^4}{25^5.4^5}\)
d) \(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
\(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
\(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{1}{144}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^8.2^8}{5^{10}.42^{10}}=\frac{1}{100}\)
\(\left(-\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=\left[\left(-\frac{10}{3}\right).\left(-\frac{6}{5}\right)\right]^4.\left(-\frac{10}{3}\right)=4^4.\left(-\frac{10}{3}\right)=-\frac{2560}{3}\)
a. \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6+7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{13^2}{14^2}=\frac{169}{196}\)
b. \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9-10}{12}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{\left(-1\right)^2}{12^2}=\frac{1}{144}\)
c. \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d.\(\left(-\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=\frac{\left(-10\right)^5}{3^5}.\frac{\left(-6\right)^4}{5^4}=\frac{\left(-2.5\right)^5.\left(-2.3\right)^4}{3^5.5^4}=\frac{\left(-2\right)^5.5^5.\left(-2\right)^4.3^4}{3^5.5^4}=\frac{\left(-2\right)^9.5}{3}=\frac{-512.5}{3}=-\frac{2560}{3}\)
tính
a) \(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
b)\(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
c)\(\frac{5^4.20^4}{25^5.4^5}\)
d)\(\left(\frac{10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
a, \(\left(\frac{3}{7}+\frac{1}{2}\right)^2=\left(\frac{6}{14}+\frac{7}{14}\right)^2=\left(\frac{13}{14}\right)^2=\frac{169}{196}\)
b, \(\left(\frac{3}{4}-\frac{5}{6}\right)^2=\left(\frac{9}{12}-\frac{10}{12}\right)^2=\left(-\frac{1}{12}\right)^2=\frac{1}{144}\)
c, \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{100^4}{100^4.100}=\frac{1}{100}\)
d, \(\left(\frac{10}{3}\right)^5.\left(-\frac{6}{5}\right)^4=\left(\frac{10}{3}\right)^4.\frac{10}{3}.\left(-\frac{6}{5}\right)^4=\left(\frac{10}{3}.-\frac{6}{5}\right)^4.\frac{10}{3}=\left(-4\right)^4.\frac{10}{3}=256.\frac{10}{3}=853\frac{1}{3}\)
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
Bài làm
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(=\left(\frac{3}{7}\right)^2+\left(\frac{1}{2}\right)^2\)
\(=\frac{9}{49}+\frac{1}{4}\)
\(=\frac{36}{196}+\frac{49}{196}\)
\(=\frac{85}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(=\left(-\frac{1}{12}\right)^2\)
\(=\frac{1}{144}\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.\left(5.4\right)^4}{\left(5.5\right)^5.4^5}\)
\(=\frac{5^4.5^4.4^4}{5^5.5^5.4^5}\)
\(=\frac{1}{5.5.4}\)
\(=\frac{1}{100}\)
~ Check đúng cho minh nha. ~
# Học tốt #
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(< =>\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
\(< =>\left(\frac{13}{14}\right)^2\)
\(< =>\frac{169}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(< =>\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
\(< =>\left(\frac{-1}{12}\right)^2\)
\(< =>\frac{-1}{144}\)
\(c,\frac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(< =>\frac{25^2\cdot\left(4\right)^4\cdot\left(5\right)^4}{25^5\cdot4^5}\)
\(< =>\frac{1\cdot1\cdot\left(5\right)^4}{25^3\cdot4}\)
\(< =>\frac{1\cdot25^2}{25^3\cdot4}\)
\(< =>\frac{1}{25\cdot4}\)
\(< =>\frac{1}{100}\)
a,(3/7)^2+2.3/7.1/2+(1/2)^2
=9/49+3/7+1/4
=169/196
b,(3/4)^2-2.3/4.5/6+(5/6)^2
=9/16-5/4+25/36
=1/144
Tính:
a) \(\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\)
b) \(\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\)
c) \(\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\)
d)\(\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\)
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
Bỏ dấu ngoặc rồi tính:
a)\(\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right);\)
b)\(\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right);\)
c)\(\left[ {\left( {\frac{{ - 1}}{3} + 1} \right) - \left( {\frac{2}{3} - \frac{1}{5}} \right)} \right];\)
d)\(1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\).
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA